

Viracor

21120.10208 Validation Report for Establishing the Performance Characteristics of the SARS-CoV-2 S Gene Next-Generation Sequencing 1.0

21120.10208 Validation Report for Establishing the Performance Characteristics of the SARS-CoV-2 S Gene Next-Generation Sequencing

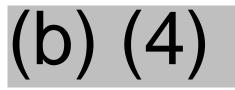
1

• 21120.10008 Validation Protocol for Establishing the Performance Characteristics of the SARS-CoV-2 S Gene Next-Generation Sequencing

uncontrolled copy

Validation Report for Establishing the Performance Characteristics of the SARS-CoV-2 Spike Gene Next-Generation Sequencing

A. Introduction/Objective


An outbreak of coronavirus disease 2019 (COVID-19) caused by the 2019 novel coronavirus (SARS-CoV-2) began in Wuhan, Hubei Province, China in December 2019, and has spread throughout China as well as numerous other countries, including the United States. The outbreak was declared a Public Health Emergency of International Concern on 30 January 2020 by the World Health Organization. Signs and symptoms of COVID-19 include fever, cough, and shortness of breath. Person-to-person spread of SARS-CoV-2 appears to occur mainly by respiratory transmission. How easily the virus is transmitted between persons is currently unclear. Based on the incubation period of illness for Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) coronaviruses, as well as observational data from reports of travel-related COVID-19, CDC estimates that symptoms of COVID-19 occur within 2–14 days after exposure. Preliminary data suggest that older adults and persons with underlying health conditions or compromised immune systems might be at greater risk for severe illness from this virus.

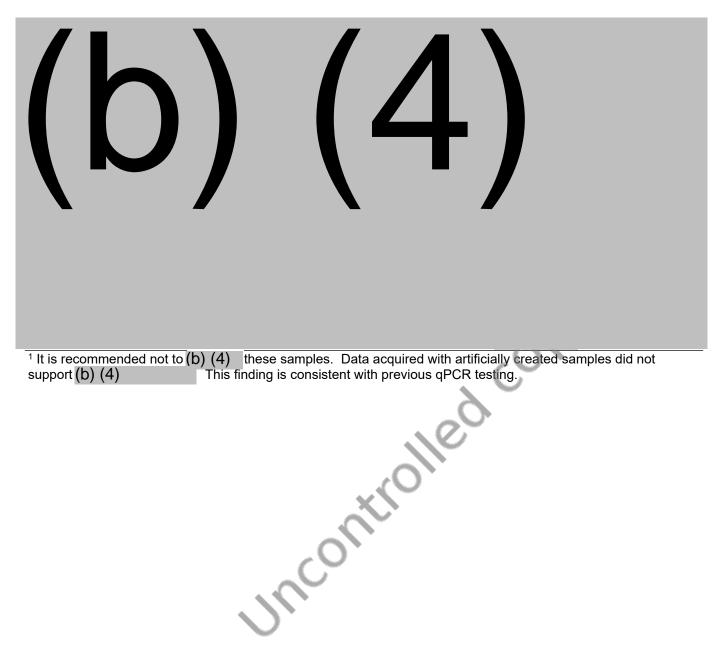
This assay uses conventional PCR chemistry for amplification of a SARS-CoV-2 target sequence from nucleic acids that have been extracted from nasopharyngeal swab specimens. The amplification step is followed by purification of the PCR products which is followed by visualization and concentration of the PCR products using the Agilent 2200/4200 TapeStation. Amplified samples are diluted, and libraries are prepared and indexed using the Illumina Nextera XT Library Prep Kit. Following a bead-based purification step, prepared libraries are quality checked on the Agilent 2200/4200 TapeStation. Libraries are then diluted, pooled, denatured, and loaded into a sequencing reagent cartridge for processing on the Illumina MiSeq instrument.

B. Scope

This validation report is intended to provide documented evidence of the following performance characteristics for the laboratory-developed SARS-CoV-2 S gene NGS assay using human nasopharyngeal (NP) swab specimens as defined by Validation Protocol 21120.10008 Validation Protocol for Establishing the Performance Characteristics of the SARS-CoV-2 S Gene Next-Generation Sequencing:

• Analytical sensitivity: limit of detection (LOD)

The performance characteristics of SARS-CoV-2 S gene NGS assay includes:


- Evaluation of the isolation of nucleic acid
- Amplification by endpoint or conventional Reverse Transcriptase PCR (RT-PCR)
- Sequencing of nucleic acids by next-generation sequencing.

Performance Characteristic	Action and Acceptance Criteria	Validation Results	Pass/Fail
Analytical Sensitivity: Limit of Detection (LOD)	Action NP ¹ swab specimens were (b) (4) (b) (4) (b) (4) (b) (4) (c) (4) (c) (4) were prepared. Samples were taken through the entire process (extraction, RT-PCR, library preparation and sequencing analysis) unless there are no visible bands after RT-PCR analysis and or tape station readings do not meet quality criteria. Note: some replicates of the lower concentration samples were not run on the TapeStation due to lack of reagents. ² Acceptance Criteria LOD for the SARS-CoV-2 S Gene NGS assay will be the lowest concentration detected by next- generation sequencing with ^{(b) (4)} replicates. The TapeStation readings must produce a band for S gene amplicons S1, S2, S3, and S4 to proceed with sequencing.	The lowest concentration detected with all replicates for all 4 amplicons was 6,667 copies/mL. Sequencing acceptance criteria was determined to be (b) (4)	As found
(k	D) (4		Pass
			Pass

CE] | { c^à ắ¢aỳ ả Ášč ¦ | ^ } đểÒ--^&aã; ^ Á cæ cậ * ÁCÎ Ёरа; ЁССЕГЁССЕЙ А́СС^ ! • ǎ; } ÁFÈEDÁX a‡ãã azaā; } ÁÜ^] [¦ cÁ{ ¦ ÁÔ• caaà |ã @ā; * Ás@ ÁÚ^ ¦ -{ ¦ { a; &^ ÁÔ@a±ás£c' ¦ã cā: Á, Ás@ Á ÚCEÚUED[XЁCÂÚÁÔ^ } ^ Ár ^ ¢ dĚD^ } ^ ¦ azaā; } ÁÚ^´ * ^ } & ãj *

Performance	Action and Acceptar	nce Criteria	Validation Results	Pass/Fail
Characteristic	(b)		4)	
	ecimens were used for validation swabs. See explanation in Pro 2, Section H.			
Table 1b. Stabi Performance Characteristic	lity characteristics to be establis	shed for the SARS-CoV- Stability Criteria	-2 S Gene NGS Assay Stability Results	
(k))	(4		

CHE] | [ç^åÅæ)åÆx` | | ^}dÄO---^&cāç^Ácæid]*ÁCÎËæ)ËGECFËACFFGEEF€GEÌÁÇ;^¦•ã[}ÆTÈEDÁXæ¢ãæaã[}ÄÜ^] [¦cÁ{ ¦ÁO•cæà|ã@3;*Á@ÁÚ^¦-{ ¦{ æ)&^ ÃÕ@aáæc^¦ãcæi•Á_Á@Á ÙCEÜÜED[XEEÂÛÃO^}^Ác^cdEO^}^¦æaã[}ÂÚ^~`^}&8aj*

C. Abbreviations and Definitions

Table 3. Abbreviations and Definitions Used in this Document Acronym/Word/Temperature Definition				
Range to be Defined	Definition			
-80°C	-64°C to -90°C			
-20°C	-15°C to -35°C			
Refrigeration (4°C)	2°C to 8°C			
Ambient/Room Temperature	15°C to 25°C			
37°C	36°C to 38°C			
BSC	Biosafety Cabinet			
°C	Degrees Celsius			
Cps/mL	Copies per milliliter			
Cps/Rxn	Copies per reaction			
b) (4)				
DF	Dilution Factor			
DNA	Deoxyribonucleic Acid			
FDA	Food and Drug Administration			
IVT	In vitro Transcript			
LOD	Limit of Detection			
b) (4)				
mL	milliliter			
N/A	Not Applicable			
ND	Not Detected			
(b) (4)				
NP	Nasopharyngeal Swabs			
NS	Nasal Swabs			
(b) (4)				
PEC	Positive Extraction Control			
qPCR	Quantita ive Real-Time PCR			
p) (4)				
RNA	Ribonucleic Acid			
S	Spike gene			
SD	Standard Deviation			
SOP	Standard Operating Procedure			
(b) (4)				
TBD	To Be Determined			
μg	microgram			
b) (4)				
μL	microliter			
b) (4)				
UTM	Universal Transport Medium			
VTM	Viral Transport Medium			
o) (4)				

D. Key Personnel

7

Table 2.	e 2. Key Personnel					
Initials	Name	Title	Role			
1h	(C)					
	(n)		1			
	J (U)					
TJM	Tyler Moss	Senior Data Analyst, Oncology Diagnostics	Data Review			
(b) (6)						

E. Materials

The following materials (or suitable equivalents) will be used:

Table 4. Reagents and Materials					
Description	Source	Lot #	Expiration Date		
(b) (4)		<i>.</i>			
SARS-CoV-2 Positive Sample	Viracor Eurofins	(b)	(4)		
Extraction			22 		
EasyMAG Lysis Buffer	BioMerieux	Z012CG1LB Z012EM1LB Z012ER1LB	28-Mar-2022 28-May-2022 28-May-2022		
EasyMAG Extraction Buffer 1	BioMerieux	Z012DE Z012FH Z012CU Z012FO Z012EP	31-Apr-2022 30-Jun-2022 31-Mar-2022 30-Jun-2022 31-May-2022		
EasyMAG Extraction Buffer 2	BioMerieux	Z011MG Z011HD Z011KL Z011MU	30-Nov-2021 31-Aug-2021 30-Sep-2021 30-Jun-2022		
EasyMAG Extraction Buffer 3	BioMerieux	Z011EH Z011GN Z011GK Z011GR	31-May-2021 31-Jul-2021 31-Jul-2021 31-Jul-2021 31-Jul-2021		
Magnetic Silica	BioMerieux	Z011DQ1MS Z011DO1MS Z011BQ1MS	21-Dec-2020 28-Apr-2021 25-Jan-2021		
Amplification					
SARS-CoV-2 S Gene Conventional RT-PCR primer mixes	(b) (4)	See below			
(b) (4)					

Page 6 of 31

Table 4. Reagents and MaterialsDescription	Source	Lot #	Expiration Date
Qiagen QIAquick One-Step RT-PCR		166025932	08-Jun-2021
Kit	Qiagen	166018860	30-Mar-2021
	Oisser	16624396	08-Jun-2021
5x Qiagen buffer	Qiagen	166014751	30-Mar-2021
Qiagen Enzyme Mix	Oiagen	166014687	08-Jun-2021
	Qiagen	166018247	30-Mar-2021
NTP Mix	Qiagen	16609182	08-Jun-2021
b) (4)		166016983	30-Mar-2021
		0201893-34	07-Apr-2021
DE000 Comercia	Autor	0201924-108	01-Jun-2021
D5000 ScreenTape	Agilent	0201924-105	01-Jun-2021
		0201924-85	01-Jun-2021
		201924-151	01-Jun-2021
D5000 Reagents	Agilent	0006545287	30-Jul-2021
(Λ)		0006550928	30-Nov-2021
) (4)			
Library Preparation		0	
llumina Nextera XT Library Prep Kit	Illumina	See below	
		20455987	28-May-2021
Tagment DNA Buffer (TD)	Illumina	20491563	31-Oct-2021
Amplicon Termont Mix (ATM)		20435366	14-Feb-2022
Amplicon Tagment Mix (ATM)	Illumina	20436468	01-Apr-2022
Joutrolize Teams at Duffar (NT)	Illumin	20473725	02-Apr-2022
Neutralize Tagment Buffer (NT)	Illumina	20443725	02-Apr-2022
Nextera PCR Master Mix (NPM)	Illumina	20463302	24-Jun-2021
	Constant and the second	20489201	28-Oct-2021
Nextera XT Index Primers	Illumina	20480201	23-Feb-2022
Ilumina Nextera Index Kit	Illumina	See below	
Resuspension Buffer (RSB)	Illumina	20464550	22-Jul-2021
(Couperision Duner (ICD)		20488713	26-Oct-2021
(b) (4)			
Library Sequencing)) (4)			
b) (4)			

Page 7 of 31

Description	Source	Lot #	Expiration Date
^{b) (4)} nuclease free H2O	(b) (4))	
(b) (4)			
Table 5. Equipment and S	Supplies		
Description		Instrument ID	
Refrigerator capable of sus	staining 2-8°C		
Freezer capable of sustain			
Freezer capable of sustain	ing -64°C to -90°C		
Biological Safety Cabinet, (
Fixed-angle benchtop cent tubes)	rifuge (with rotor for 2mL	(b)	(4)
(b) (4) swi	ing-bucket centrifuge		
BioMerieux easyMAG			
(b) (1) Thermal Cycler			
(b) (4) Thermal Cycler (b) (4)	Sequencer		
	•		
(b) (4) Agilent 2200 or 4200 Tape (b) (4) 96-well N	•		
(b) (4) Agilent 2200 or 4200 Tape (b) (4) 96-well N stand	Station		
(b) (4) Agilent 2200 or 4200 Tape (b) (4) 96-well M stand) (4) vortexer	Station MIDI plate magnetic		
(b) (4)3Agilent 2200 or 4200 Tape(b) (4)96-well Nstand) (4)vortexerPCR strip tube mini-centrific	Station MIDI plate magnetic		
(b) (4)3Agilent 2200 or 4200 Tape(b) (4)96-well Nstand96-well N) (4)vortexerPCR strip tube mini-centrifue(b) (4)High-speed	Station MIDI plate magnetic uge ed micro-plate shaker	(b) (4)	
(b) (4)3Agilent 2200 or 4200 Tape(b) (4)96-well Nstand) (4)vortexerPCR strip tube mini-centrifu(b) (4)High-spee(b) (4)PCR tubes or (b) (4)	Station MIDI plate magnetic uge ed micro-plate shaker) Optical 96-well		
(b) (4)3Agilent 2200 or 4200 Tape(b) (4)96-well Nstand96-well N) (4)vortexerPCR strip tube mini-centrifue(b) (4)High-spee(b) (4)High-spee(b) (4)PCR tubes or (b) (4)Reaction Plate (standard p	Station MIDI plate magnetic uge ed micro-plate shaker) Optical 96-well late)		
(b) (4)3Agilent 2200 or 4200 Tape(b) (4)96-well Nstand96-well N) (4)vortexerPCR strip tube mini-centrifit(b) (4)High-spec(b) (4)High-spec(b) (4)PCR tubes or (b) (4)Reaction Plate (standard p(b) (4)caps or Optical A	Station MIDI plate magnetic uge ed micro-plate shaker) Optical 96-well late) Adhesive Covers		
(b) (4)3Agilent 2200 or 4200 Tape(b) (4)96-well Nstand96-well N) (4)vortexerPCR strip tube mini-centrifu(b) (4)High-spee(b) (4)PCR tubes or (b) (4)Reaction Plate (standard p(b) (4)caps or Optical 2(b) (4)caps or Optical 2	Station MIDI plate magnetic uge ed micro-plate shaker) Optical 96-well late) Adhesive Covers ubes		
(b) (4)9Agilent 2200 or 4200 Tape(b) (4)96-well Nstand96-well N) (4)vortexerPCR strip tube mini-centrifu(b) (4)High-spec(b) (4)PCR tubes or (b) (4)Reaction Plate (standard p(b) (4)caps or Optical A2mL non-skirted (b) (4)tr(b) (4)Optical Tube Strips	Station MIDI plate magnetic uge ed micro-plate shaker) Optical 96-well late) Adhesive Covers ubes (8x)		
(b) (4)3Agilent 2200 or 4200 Tape(b) (4)96-well Nstand96-well N) (4)vortexerPCR strip tube mini-centrifu(b) (4)High-spee(b) (4)PCR tubes or (b) (4)Reaction Plate (standard p(b) (4)caps or Optical 2(b) (4)caps or Optical 2	Station MIDI plate magnetic uge ed micro-plate shaker) Optical 96-well late) Adhesive Covers ubes (8x) Caps (8x)		

Table 6. SARS-CoV-2 S Gene Sequencing Assay Primer Sequences					
Oligonucleotide	Final Concentration nM				
(b)	(4)				

F. Procedures

General Methods

Nasal Swab Specimen Preparation

Note: Nasopharyngeal swabs were not available during the validation testing; nasal swabs were used as a substitute. Nasopharyngeal swabs are typically collected by trained healthcare personnel or self-collection is monitored by a supervisor (not available onsite at the time of collection). Nylon flocked swabs were used in this study. In general, nylon flocked swabs are routinely used for nasopharyngeal sampling.

DNA Quality Check by Agilent TapeStation

The Agilent 2200 or 4200 TapeStation in conjunction with D5000 ScreenTapes, D5000 reagents, and the TapeStation Analysis software was used to assess post-amplified and purified PCR reactions for the presence, size, and concentration of any products generated. The values reported in the Sample Table (i.e. total DNA concentration in the sample) was used to determine dilution factors for subsequent library preparation. A portable digital file (.pdf) along with a Sample Table comma separated value (.csv) file were generated for each run performed. The Sample Table was formatted using Excel and printed for inclusion in the run packet.

Library Quality Check by Agilent TapeStation

The Agilent 2200 or 4200 TapeStation in conjunction with D5000 ScreenTapes. D5000 reagents and the TapeStation Analysis software was used to assess purified libraries for presence, average fragment size, and concentration of the fragment distributions generated. The (b) (4) (b) (4) functions of the software was used to (b) (4) (b) (4) in order to generate the metrics described above. A portable digital file (.pdf) along with a Region Table comma separated value (.csv) file was generated for each run performed. The Region Table was formatted using Excel and printed for inclusion in the run packet. The values reported in the Region Table were used to determine dilution factors for subsequent library normalization.

Sequencing Analysis

Analysis of next generation sequencing data for the SARS-CoV-2 S gene NGS assay was done using Qiagen CLC Genomics Workbench v20.0.1 using NC_045512.2 as the reference strain. The custom workflow in CLC Genomics Workbench processed the sequencing data as follows: paired fastq files were imported, primer sequences were trimmed from 5'-ends of reads, reads were mapped to the full SARS-CoV-2 reference genome (NC_045512.2), single nucleotide and insertion/deletion variants relative to reference were called and annotated, and a consensus sequence of the spike gene (bases 21615 to 25436) was generated. The analysis workflow reported annotated variant tables, spike-gene coverage tables, and spike-gene consensus sequences.

Acceptance criteria for controls and negative samples

Upon TapeStation D5000 assessment and subsequent analysis of data using the TapeStation Analysis software: if the viral load was insufficient to obtain a correct band for the SARS-CoV-2 S gene targets (S1 (1026bp), S2 (893bp), S3 (1178), and S4 (1264bp), these results were considered negative. (b) (4) This

validation served to determine the(h) (4)

Acceptance criteria for RT-PCR amplicon quality

Positive results for the RT-PCR reactions were identified by 1) the presence of a band at the appropriate size for the SARS-CoV-2 S gene PCR products (S1 (1026bp), S2 (893bp), S3 (1178), and S4 (1264bp) relative to the D5000 ladder and 2) a peak table reporting a concentration for the

Page 9 of 31

specific bands for the sample in question. The presence of secondary products was accounted for prior to moving into library preparation by using the concentration reported in the Sample Table to determine dilution factors used.

Acceptance criteria for Sequencing

Sequencing data was assessed using both global run metrics provided by the MiSeq upon run completion as well as individual library sequence quality metrics. Guidelines from Illumina were referenced to determine run metrics thresholds. SARS-CoV-2 S Gene NGS runs using MiSeq v2 chemistry reagents running paired-end 2 x 151 reads must exhibit:

- Cluster densities approximating 600 1,200K/mm²
- > 80% of bases called exhibit Q-scores ≥30

Individual library sequence quality metrics were assessed by referencing the sequencing quality reports generated by analysis through the Qiagen CLC workbench program. For SARS-CoV-2 S gene NGS runs, up to 24 libraries can be sequenced on a single flow cell and the number of reads displayed in the trim summary section of the trim report should be \geq 50,000 reads for each amplicon (prior to the reads being trimmed). Nucleotide positions between 21615-25436 should have a coverage of \geq 100 as summarized in the mapping coverage table.

Read acceptance criteria

- Percent of reads greater than Q30 for Read 1 ≥ 80%
- Percent of reads greater than Q30 for Read $2 \ge 80\%$
- 95% of spike-gene bases > 100x coverage

Performance Characteristics Evaluation

Analytical Sensitivity: Limit of Detection (LOD)

Experimental Design:

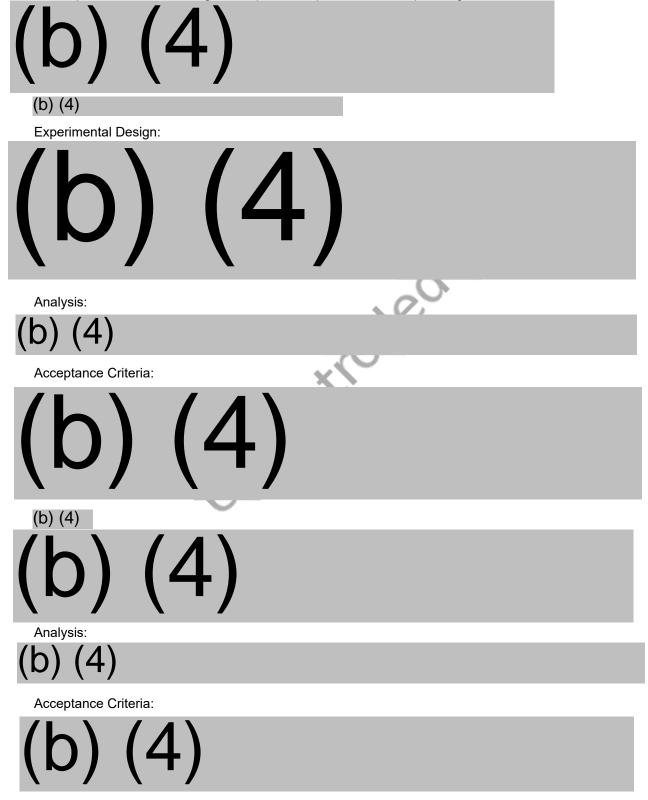
For the evaluation of analytical sensitivity (limit of detection (LOD)) of the SARS-COV-2 NGS assay, human SARS-CoV-2 qPCRnegative NS samples were (b) (4) (b) (4) through NGS All samples were subjected to extraction, amplification, and sequencing as described above

NGS. All samples were subjected to extraction, amplification, and sequencing as described above.

During the initial testing for Sensitivity, there was a deviation due to differences in how technicians were running the samples; see Deviation 1, Section H.

In addition, not all levels in the Sensitivity assay were assayed on the TapeStation due to the vendor being out of stock; see Deviation 2, Section H.

Finally, there was an anomalous reading in the (b) (4) copies/mL level; the S3 amplicon failed to amplify, resulting in(b) (4) replicates passing acceptance criteria; see Deviation 3, Section H. This level had (b) (4) replicates pass acceptance criteria in pre-validation (see data in Appendix A). To assure that the reading obtained during validation was an anomaly, the (b) (4) copies/mL sample will be (b) (4) and re-assayed. This data will be reported in an amendment to this report.


Analysis:

The sequencing results of all samples were analyzed to identify depth of coverage and call variants for each.

Page 10 of 31

Acceptance Criteria:

 LOD for the SARS-CoV-2 S Gene NGS assay will be the lowest concentration detected by next-generation sequencing with ^{(b) (4)} replicates detected. The TapeStation readings must produce a band for S gene amplicons to proceed with sequencing.

Page 11 of 31

Experimental Design:

4) 4) (b)4)

G. Results

Graphical and tabular presentations of the results are below. Please see Table 1 for textual descriptions of results. Please see Methods and Analysis sections for information pertaining to these topics. Detailed methods and results may be found in Binder **BP-2020-098**.

Analytical Sensitivity: Limit of Detection (LOD)

Page 13 of 31

CE]] |[ç^âÁe) åÁstil^)džO--A&dž^Áceda]*ÁGÎËRe)ËBECFEXOFFCEEE=ECEÌÁG&^!•ã]}ÁrÈEDM:ca‡ãæaã]}ÁÜ^][¦cÁ{¦ÁÔ•cœà|ã@3)*Ás@ÁÚ^!-[¦{æ}&^ ÆÖ@aadsc^!ãc&A_Ác@Á ÚCEÜÜED[XËGÛÆÔ^}^A¢^cdĔŎ^}^!æaã]}ÁÚ^~`^}&8]* Table 9. Results from Sensitivity Amplification (4)

Table 9. Results from Sensitivity Amplification (4) (D)

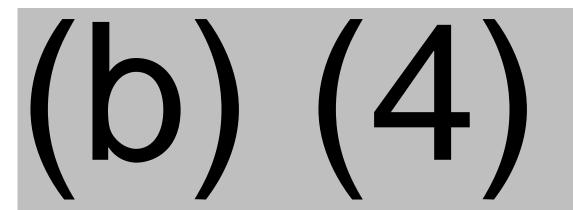
The remainder of this page is intentionally left blank.

Page 16 of 31

Page 17 of 31

OE] | [ç^åÅenjå&;`|:^}dnÖ~~&acçi^Áraekanj*ÁGÎËRenjËGEFEÄGFFGEÈEEGEÌÁçç^¦∙ã[}ÁFÈEDÁKanpääanaaã}ÄÜ^] [¦dÁ[¦ÁÖ•aceki)ãe@j*Ás@ÁÚ^¦-{¦{ anj&^ AÖ@estansor¦ãe@aseÁ_As@Á ÙOEÜÜEĎ[XEAŬAÕ^}^Áp^¢dEÕ^}^¦anaaŭ}}ÂÚ^~`*^}&anj*

(4)


(b) (4)

(b)

 $\left(b \right)$

CE[]¦[ç^âÁe)jâÁ&;'¦^}dĂO--^&caç^Árcekoa]*ÁCÎËRenjËC€CFÉACFFC€EE€C€ÌÁÇ;^¦∙ã[}ÁrÈEDÁxa¢ãaaaaã[}ÁÜ^][¦óÁ[¦ÁO+caèl|ã@3)*Ás@ÁÚ^¦-{¦{ anj &^ ÁD@a±ae&c^¦ãcaReAj.Áx@Á ÙCEÜÜÜÊ[XEBÁUÃO^}^Áo-¢dEŐ^}^¦aaaã}}ÁÙ^``^}&3j*

(4)

Page 19 of 31

Wi&(}d[||^å,Á&{[]^Á,¦ā],cyå,Áà^,(b)(6), Á;}Á=G=E27/àËG=G=Á≂=HGIÁ,CÔÙVDEÁÚæ*^Á≂JÁ,Á+F Ô[}-ãã^}aãa/iaae¢ATaæ*iãaeÞEÁÚ¦[]^\;cay,+xxaaæy(iAÔ`¦[-ā]•È FDA-CBER-2022-1614-1790140

21

(b) (4)

Page 20 of 31

FDA-CBER-2022-1614-1790141

(4)

Page 21 of 31

(D)

OEI] | [ç^å/æajå/&x`| | ^}dzÖ~^&caço^Árcæidaj*ÁGÎËRæajËDEOFEXOFFOEEÈ€OEÌÁçç^¦•ã(}ÁFÈEDÓxædañaaaat(}ÁÜ^][¦cÁt[¦ÁÖ•cæai|ãr@aj*Áx@ÁÚ^¦-t[¦{æaj&^ #Ö@eatæsc^¦ãrca&rÁ_Áx@Á ÙOEÜÜED[XEEAU/ÃO^}^Acho¢dEŐ^}^¦æaat(}ÂÚ^´`^}&8aj*

(b) (4)

(b) (4) (b) (4)

(b)(4) (b)(4)

CE[] | [ç^åÁæ)åÁ&; | | ^}dĚÒ--^&caặ^Á cæid]*ÁGÎËRæ)ËGECFÉACFFCEÈE€CEÌÁÇ^¦•ã[}ÁFÈEDÁkæpääææā[}ÁÜ^][¦ÓÁ[¦ÁÔ•cæà|ã@3]*Á@ÁÚ^¦-{¦{æ}&^ ÁÕ@adæc^¦ãcæirá_Á@Á ÙCEÜÜÉD[XERÁŮÆÔ^}^Ác^cdĚÔ^}^¦ææā[}ÁÛ^~`^}&ãj*

uncontrolled

(b)

Fate of Runs

All assays performed to support this validation protocol are listed below, along with the disposition of the data for each run.

Table 18. Fate of Runs					
Run Date	Run Name	C.	Purpose	Results	
(b		1)			

¹ See Deviation 1, Section H.

Page 26 of 31

H. Deviations

- 1. Deviation 1, Sensitivity, CA-02699. In initial testing for the sensitivity portion of the protocol, there were differences between technicians in how the method was run. The analysts were re-trained on the method, and the sensitivity experiment was repeated. The data reported here was from the repeated assays.
- 2. Deviation 2, Sensitivity, CA-02700. Some samples tested for the sensitivity at the lower concentrations were not run on the Tapestation due to the lack of tapes. The vendor is currently out of stock, so some samples at the lower concentration were not assayed on the TapeStation. This lack of testing should not affect the conclusions drawn from this study, as the replicates run at these lower concentrations did not generate bands in TapeStation testing. Not testing other replicates at the same concentration would not affect the conclusions drawn from the data.
- 3. Deviation 3, Sensitivity. The testing established that 6,667 copies/mL met the acceptance criteria set for this assay. However, there was an anomalous result observed at (b) (4) copies/mL; S3 failed to amplify. An additional (b) (4) copies/mL sample was extracted and used for amplification replating. The replating amplification produced an S3 amplicon at (b) (4) and was processed through NGS library preparation with S1, S2, and S4 amplicons from the first attempt. Sequencing data indicated coverage drop-out in the S3 amplicon region for the replating attempt. Because the 10,000 copies/mL level also met the acceptance criteria, the LOD was set at the lowest level at with all replicates detecting all amplicons, which was 6,667 copies/mL.

It was thought that the lack of detection of the missing amplicon was due to the low concentration of the amplicon (b) (4) which is typically below the threshold where a sample will advance to the sequencing step. The(b) (4) copies/mL concentration did have 4 out of 4 amplicons detected for (b) (4) during the pre-validation sensitivity assessment (See Appendix A for data), which also points to the lack of detection of the S3 amplicon in the one replicate as an anomaly. To address this anomaly, an additional study will be implemented that repeats the (b) (4) copies/mL sample to ensure that 4 out of 4 amplicons are detected at that concentration. That data will be reported in an amendment to this report once the testing is completed.

I. Conclusions

The enclosed data shows that the SARS-CoV-2 NGS assays are (b) (4) for NP swabs as a matrix. The data also shows the limit of detection.

Based on the entirety of the results from the qualification study, the performance characteristics of the SARS-CoV-2 Next Generation Sequencing assay met the acceptance criteria specified in 21120. 10008 Validation Protocol for Establishing the Performance Characteristics of the SARS-CoV-2 S Gene Next-Generation Sequencing. Therefore, human NP swab specimens will be accepted for testing in the SARS-CoV-2 NGS assay.

J. Related Documents

Page 27 of 31

Validation Protocol 21120.10008 Validation Protocol for Establishing the Performance Characteristics of the SARS-CoV-2 S Gene Next-Generation Sequencing

SOP 21120.705 NucliSens easyMAG & eMAG Total Nucleic Acid Extraction

SOP 21120.5983 Agilent Tapestation Operation, Maintenance, and Calibration

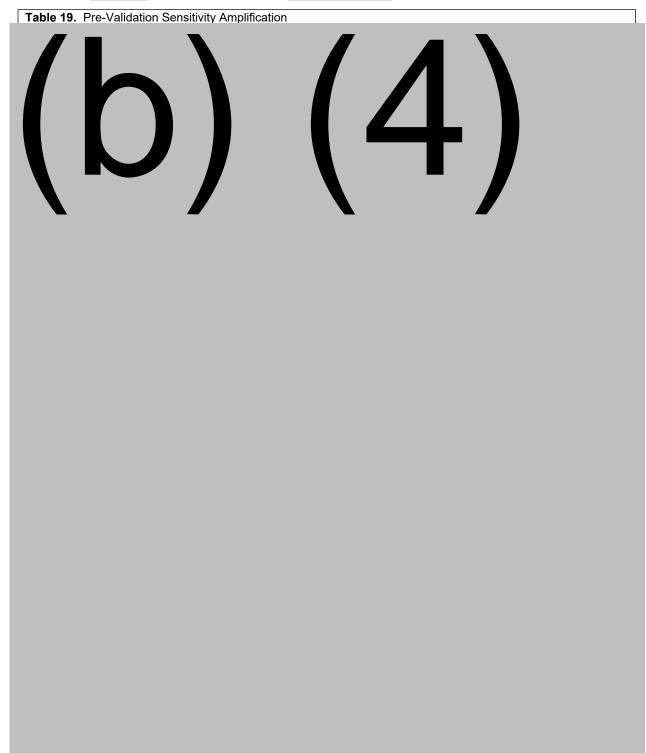
SOP 21120.7375 Illumina MiSeq Operation, Maintenance, and Calibration

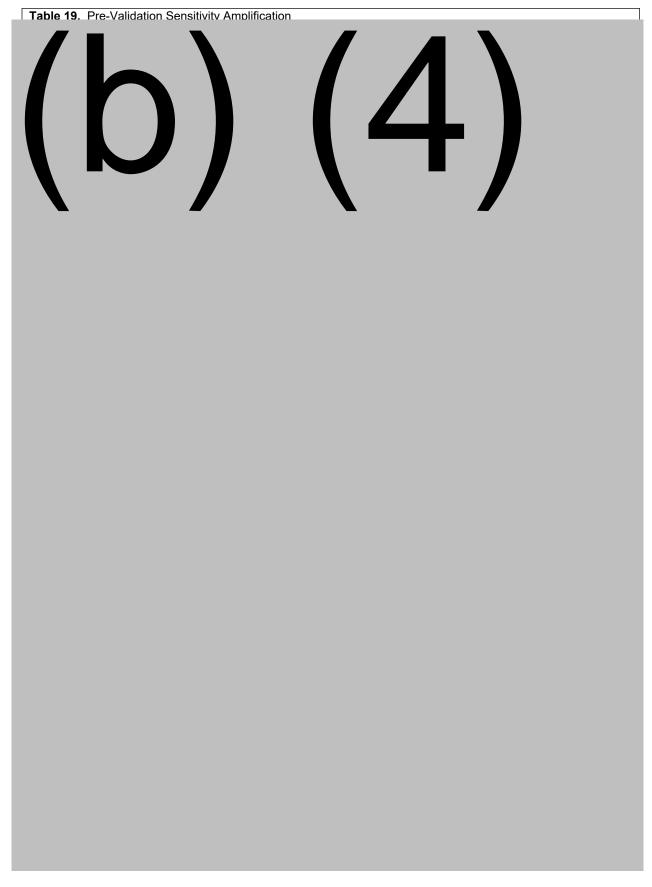
21120.443 Thermal Cycler Operation, Maintenance, and Calibration of the (b) (4) Thermal Cycler

SOP 21120.269 Records Management

SOP 21120.9806 NGS Data Retention

K. References


- 1. Burd EM. Validation of laboratory-developed molecular assays for infectious diseases. Clin Microbiol Rev. 2010 Jul;23(3):550-76.
- Policy for Diagnostics Testing in Laboratories Certified to Perform High Complexity Testing under CLIA prior to Emergency Use Authorization for Coronavirus Disease-2019 during the Public Health Emergency Immediately in Effect Guidance for Clinical Laboratories and Food and Drug Administration Staff. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health. February 29, 2020.
- 3. Bustin, S. A., Apr. 2010. Why the need for qPCR publication guidelines?-The case for MIQE. Methods (San Diego, Calif.) 50 (4), 217-226.URL <u>http://dx.doi.org/10.1016/j.ymeth.2009.12.006</u>
- Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., Wittwer, C. T., Apr. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical chemistry 55 (4), 611-622. URL <u>http://dx.doi.org/10.1373/clinchem.2008.112797</u>
- CAP Molecular pathology checklist -<u>http://www.cap.org/apps/docs/laboratory_accreditation/checklists/new/molecular_pathology_checklists.pdf</u>
- 6. CLIA Interpretive Guidelines 493.1252. CDC, DHHS. CLIA Current Regulations.01/24/2004. www.cdc.gov/clia/regs/toc.aspx
- 7. Molecular Microbiology: Diagnostic Principles and Practice, Second Edition. David H. Persing . ASM Press. 2011. Washington, D.C.
- 8. MM3-A2, Vol. 26 No.8. Molecular Diagnostics Methods for Infectious Diseases; Approved Guideline, Second Edition, Clinical and Laboratory Standards Institute. Wayne, PA. 2006.
- 9. MM09-A2. Nucleic Acid Sequencing Methods in Diagnostic Laboratory Medicine; Approved Guideline, Second Edition, Clinical and Laboratory Standards Institute. Wayne, PA. 2014.
- Taylor, S., Wakem, M., Dijkman, G., Alsarraj, M., Nguyen, M., Apr. 2010. A practical approach to RT-qPCR-publishing data that conform to the MIQE guidelines. Methods 50 (4), S1-S5.URL: <u>http://dx.doi.org/10.1016/j.ymeth.2010.01.005</u>
- 11. Submission guidelines for nucleic acid amplification tests for infectious agents, State of New York Department of Health. February 2011.


Page 28 of 31

Appendix A

Pre-Validation Data for Assay Sensitivity: Limit of Detection

Pre-validation testing used (b) (4)(b) (4)listed in the table below. Results of this testing show that all 4 amplicons weredetected for (b) (4)replicates tested at the (b) (4)copies/mL concentration.

CE[] | [ç^å/æ)å/&; | | ^}dÈO--^&caç^Árce/cg * ÁGÎËRe)ËBECFÈCFFCEÈEECEÌÁÇ^¦•ã[}ÁFÈEDÁxæpääææā[}ÁÜ^][¦ÓA[¦ÁO•cæa|ã@3)*Á@ÁÚ^¦-{¦{æ}&^ ÁÖ@edæsc^¦ãcæa•Á_Á@Á ÙCEÜÜÊD[XËEÂU/ÃO^}^/&/exeã[}ÂÚ^~`^}&83)*

 Table 19. Pre-Validation Sensitivity Amplification

 (b) (4)

uncontrolled