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SUMMARY

In this paper, we examine comparative analysis of rates with a view to each of the usual comparative
parameters—rate difference (RD), rate ratio (RR) and odds ratio (OR)—and with particular reference to first
principles. For RD and RR we show the prevailing statistical practices to be rather poor. We stress the need for
restricted estimation of variance in the chi-square function underlying interval estimation (and also point
estimation and hypothesis testing). For RR analysis we propose a chi-square formulation analogous to that
for RD and, thus, one which obviates the present practice of log transformation and its associated use of
Taylor series approximation of the variance. As for OR analysis, we emphasize that the chi-square function,
introduced by Cornfield for unstratified data, and extended by Gart to the case of stratified analysis, is based
on the efficient score and thus embodies its optimality properties. We provide simulation results to evince the
better performance of the proposed (parameter-constrained) procedures over the traditional ones.

KEYy worDs  Asymptotic confidence intervals Biometry Constrained maximum likelihood estimation
Epidemiologic methods

INTRODUCTION

Comparative analysis of two rates is a characteristic problem in the study of the occurrence of
illness (epidemiology) and in many other investigative contexts.

The compared rates take one of two forms, proportions or incidence densities. A proportion-
type empirical rate (r) expresses the number of ‘cases’ (¢) as a proportion of the number of subjects
(S): r = ¢/S. When the cases occur as events in the follow-up of a dynamic population, then the rate
(incidence density) expresses the number of cases in relation to the amount of population-time (T°)
of follow-up: r = ¢/T.

Either way, comparative analysis concerns the relative magnitudes of the theoretical (expected)
rates, R, and R, corresponding to the compared categories of a determinant (potential or known)
of the magnitude of the rate. The relative magnitudes are commonly thought of in terms of either

® Adapted from a lecture before the International Conference on Medical Statistics, Basle, Switzerland, September 8,
1983.
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rate difference (RD), rate ratio (RR), or odds ratio (OR}):
RD = Rl - Rl}
RR =R, /R,
OR = [R;/(1 = Ry)]J/[Ro/(1 =Ry)]

The usual aspects of data analysis with respect to each of these comparative parameters are three:
(a) testing of the ‘null hypothesis’ of R; = R, (i.e. RD = 0, RR = 1, OR = 1), (b) point estimation
of the comparative parameter of interest and (c) computation of a confidence interval for it.

Practices in these analyses have remained theoretically unattractive, in part for reasons of
computational ease. But now that computational complexity is no longer a tenable reason for
theoretically deficient analyses, it is time to examine the nature of theoretically more appropriate
procedures and to update analytic practices accordingly.

The presentation that follows is an attempt to delineate theoretically proper procedures for
comparative analysis of rates, and to show numerically that such procedures do, indeed, have better
performance characteristics than some of those currently in use. The outlook here is predominantly
didactic, but some novelties do also arise.

SINGLE PROPORTION

As a preliminary to comparative analysis of two rates, consider the analysis (asymptotic) of a single
proportion-type rate. With ¢ cases among S subjects, the number c is viewed as a realization for a
binomial sampling distribution with parameters R (the theoretical rate) and S. Asymptotically,
then, ¢ is taken as a realization for a Gaussian sampling distribution with expectation and variance
equal to those of the binomial, that is SR and SR (1 — R), respectively. Equivalently, the empirical
rate r = ¢/§ is viewed as a realization for a Gaussian sampling distribution with parameters R and
R(1-R)/S.
For any null value R = R, the test statistic is commonly taken as

X3 = (r—Ro)*/[Ro(1 = Ro)/S] (1)

which is a direct corollary of the asymptotic model, and its value is referred to the chi-square
distribution with one degree of freedom.

The point estimate is generally taken as the empirical value: R = r.

Confidence limits (two-sided) are commonly derived as

ry, [r—rys]'? @

where y, is the square root of the 100(1 — «) centile of the chi-square distribution, one degree of
freedom.

A theoretically preferable approach to interval estimation is based, as Wilson® has noted, on
consideration of the generalization of the null chi-square, that is, on chi-square as a function of R:

Xz=(—R?*[R(1-R)/S] (3)
100(1 — a) per cent confidence limits are the values of R such that
Xi=1: 4

—for 95% limits equal to 3-84 = (1-96)%. In a way, this idea traces back to Laplace, as Wilks? has
pointed out.
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COMPARATIVE ANALYSIS OF TWO RATES 215

Example 1

With r = 0/10, the 95 per cent interval based on (2) is 0-00 to 0-00, whereas (3) and (4) give 0-00 to
0-28. The ‘exact’ upper bound (based on mid-P) is 0-26.
The latter approach is not only preferable to that commonly used, but, indeed, theoretically ideal
since it derives from the ‘efficient score’ approach described by Cox and Hinkley,® among others.
A worthy alternative results from the principle that the logarithm of the likelihood ratio,
multiplied by two, has asymptotically the chi-square distribution with one degree of freedom. This
implies the chi-square function
rr(q—rs-«
X i i) log m

Its performance, although excellent for R in the vicinity of r, can be inferior to that of the function
in (3) in the context of large discrepancies between the empirical (r) and the theoretical (R). (In
applying likelihood ratio statistics it is necessary to instruct the computer to take 0° = 1)

(5)

Example 2

Recall Example 1 above. With the chi-square function in (5), the relation in (4) gives the upper
bound of 0-17—somewhat inferior to that based on (3).

The chi-square function does not serve interval estimation alone; it is a summary of all of the
statistical evidence in the data. Point estimate (ﬁ = r) corresponds to X i = 0, and the null chi-
square is the function’s value at R = R,. Moreover, the likelihood ratio function—the Bayesian
summary of evidence—is implicit in the chi-square function.

TWO PROPORTIONS WITHOUT STRATIFICATION: RATE DIFFERENCE

Now consider two rates, an index rate r; = ¢, /S, and a reference rate ry = ¢o/Sp, corresponding to
an overall (marginal) rate of r = ¢/S (where ¢ = ¢; + ¢g, and § = §; + Sg). These are data whose
usual array is the 2 x 2 table.

For the null hypothesis of RD = 0 (R, = R,) the proper chi-square statistic is, as is well known,

X3=(r—ro)*/{r(L=n)[S/S -] (1/8, +1/S,)} (6)

It derives from two types of argument—one unconditional and the other conditional on the
marginal rate.** Note the use of the unbiased estimator of the Bernoulli variance in the
unconditional approach.

The point estimate is, of course, taken as RD = ry —ro.

Analogously with the common practice for a single rate, confidence limits are usually derived as

ri=rotx[ri(1—r)/Sy+ro(1 —rg)/So]'"? (7

This means incoherence between the null test statistic and confidence limits.® It can also mean quite
poor results.

Example 3

Consider the data r; = 0/10, rg = 0/20. The 95 per cent confidence interval based on (7) is 0-00 to
0-00—even though, clearly, both negative and positive values of RD are consistent with the data.

For proper interval estimation, then, one needs a generalization of the null chi-square in (6) to a
chi-square function of RD, with (6) a special case of it, analogously with the generalization of (1)
to (3).
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Following, as a paradigm, Wilson’s approach to the analysis of a single rate, we take the
numerator of the function as the square of r; — r, — RD. But the pivotal matter is the denominator
(variance of ry —ry). The usual interval in (7) corresponds to the use of ry and rq in place of R, and
R, respectively. By contrast, the paradigm in (3) calls for estimation of R, and R, in a restricted
way, with the theoretical value of RD taken into account. The null chi-square in (6) does involve the
restriction of RD = 0 in the estimation of R, and R, (as R, = Ry, = r). More generally, the
denominator of the chi-square function, based on r; —r, — RD in the numerator, is to be taken as

Vy -y =[Ri(1=R,)/S; +Ro(1 = Ro)/So]1S/(S = 1) (8)

with the tilde denoting an estimator restricted by fi, — R, = RD. Thus we may take Ry =R,
+ RD, and solve R, from the likelihood equation based on two independent binomials involving
the estimated probabilities Ro+RD and R,, corresponding to S; and S, respectively. Even
though the likelihood equation is of the third degree, a unique closed solution for Ro is given in
Appendix 1. The chi-square function thus derives from computing

X2, =(ry=ro—RDV/V, _, ©)

for a succession of values of RD.

Example 4

Recall Example 3 above (with r; = 0/10 and r, = 0/20). With this chi-square function, the 95 per
cent limits for RD, corresponding to X3, = 3-84, are —0:17 and 0-28. The value RD = —0-17
corresponds to R, =000 and R, =0 17 for the variance in (8) and (9), and RD = 0-28 implies
R, = 0-28and R, = 0-00 for it. By extension, were the data to be r, = 10/10 and r, = 20/20, the 95
per cent interval would be —0-28 to 0-17.

In this formulation of the chi-square function the accent was on proper formulation of the
variance, the denominator—with the contrast (r; —r, — RD) in the numerator adopted simply by
analogy with r—~ R in the context of a single rate. Theoretically that contrast is inferior to the
‘efficient score’. This latter approach, somewhat more complicated, is examined in Appendix II, and
the likelihood ratio approach in Appendix IIL

TWO PROPORTIONS WITHOUT STRATIFICATION: RATE RATIO

When the analysis is directed to the value of rate ratio, the chi-square for the null value of RR = 1is
the one given in (6) for RD = 0 (R; = Ry)

Just as naturally, the point estimate (RqR}—the zero point of the chi-square function—is the
empirical value ry /ry.

Values of RR corresponding to X 2, = xZ, or 100(1 — ) per cent confidence limits, are usually
solved from an approach involving log transformation of r,/r, and first-order Taylor series
approximation of the variance of log (r, /ro}—with evaluation at (ry, ro).”

Example 5§

With r; = 10/10 and ry = 20/20, the 95 per cent interval for RR according to the approach
described by Katz et al.”

exp {log(ry/ro) £ 1:96 [ (1 —ry)/e, + (1 —ro)/co]}

is 1:00 to 1-:00—even though values on either side of unity are, obviously, consistent with the data.
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COMPARATIVE ANALYSIS OF TWO RATES 217

To the extent that this approach merits use at all, it needs to be mended by the use of (R, ,Ro)in
place of (ry, ro) in the variance—with R, and R, the ML estimates restricted by R, = Ry (RR).
A chi-square function for RR more closely analogous to that in (9) for RD is apparent by viewing
the numerator contrast in the latter not as (r; —ry) — RD but as r; — (r, + RD). This suggests®

X:R = [rl o (RR)]ZJ"! ry—rg(RR) (IO}

with )
Vs, —roany = [Ry (1= Ry)/S; + (RRY Ro (1 — Ro)/S 1S/(S — 1) (11)

In this variance, R, = R, (RR), while for R the likelihood equation (quadratic) gives

R, = [ - B—(B*—44C)'*]/(24) (12)
with

A = S(RR)

B= —[S;(RR)+c¢c; +So+¢o(RR)]

C=z¢

(see Appendix I). This formulation obviates not only the use of the log transformation but
asymptotic (Taylor series) approximation of the variance as well. Also, at RR = 1 this function
reduces to the null chi-square in (6), so that in these terms interval estimation and ‘hypothesis
testing’ become mutually coherent, as with RD, in contrast to the prevailing procedures.

Example 6

Recall Example 5 (withr; = 10/10,r, = 20/20). With the chi-square function in (10), the 95 per cent
limits for RR, corresponding to X 2 — 3-84,are 0-72 and 1-20. With RR = 0-72, we have R, = 072
and Ry = 100, whereas with RR = 1-20, the values are R, = 1-00and R, = 0-83. It is worth noting
that the corresponding limits for RD are —0-28 and 0:17 (cf. Example 4).

The chi-square function for RR based on the score statistic, somewhat complicated, is examined
in Appendix II, and that based on the likelihood ratio statistic in Appendix II1.

TWO PROPORTIONS WITHOUT STRATIFICATION: ODDS RATIO

For odds ratio analysis, the null chi-square in routine use is again that in (6), and the point estimate
is commonly taken as the empirical value, [r, /(1 —r,)]/[ro/(1 —ro)].

Values of OR corresponding to X 2, = xZ (asymptotic confidence limits) are being computed in
various ways, including those of Woolf® and Cornfield.!® One can also compute exact limits, for
OR, in contrast to RD or RR.!!

The type of chi-square function proposed above for RD and RR is easy to derive for OR as well,
the numerator contrast being r, —ro (OR)/[1 47, (OR — 1)]. This approach involves a problem,
however, as this contrast is no longer a linear combination of r; and ry: an asymptotic variance
(Taylor series approximation) needs to be used.

On the other hand, the score statistic approach is readily applicable to OR, as the marginal rate
can be viewed as an ancillary statistic so that no nuisance parameter needs estimation. The chi-
square function takes the form of

[ n—R, R, T
§1(|—R1) fio(l"éo)_ _ [51("1—§1)]z

Xén=

[ 1 R 1 " 5 1 + 1 "“' S
SR, (1-Ry) SoRe(1-Ro)[S—1 |[S;R,(1—R,) SoRo(1—Re)| S—1
(13)
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where ) . .
R, = Ry (OR)/[1+Ro(OR —1)]
R, = [~ B+ (B*—440)'*]/(24)
with
A=S,(0OR—1)
B =5,(OR)+S,—c(OR —1)
C=~—c¢

(see Appendix I1). This statistic can be recognized as that underlying the limits Cornfield'® gave—
with the exceptions that we have omitted the ‘continuity correction’!? and have used the unbiased
estimator of the variance. It may be of interest to note that the derivation here (Appendix II) is not
conditional on the marginal rate, in contrast to Cornfield’s, this duality being the general form of
that underlying the null chi-square in (6).

For the likelihood ratio approach, see Appendix II1.

STRATIFIED PAIRS OF PROPORTIONS

If, in the interest of comparability, the data require stratification by a covariate, then we need
generalizations of the chi-square functions presented above.
For the statistic for RD in (9) the stratified counterpart may be taken as

Xio=[Z,W;(ri—ro;~RD)/EWV, ) (14)

with W,—the weight for the jth stratum—suitably proportional to the amount of comparative
information in it. This function may be recast as

X}y, = (rt—r§ —RDV/[Z;W/Z,W)V, _, ] (15)
where rf and r§ are mutually standardized rates with the weights of standardization taken as W:
rt =L Wiry [Z;W,

For the null chi-square Cochran'? took the weights as (1/S,;+ 1/S,;) ! assuming that R;(1 — R) s
constant over j. In the general case we may assume, analogously, that R;;(1 — R;;) is constant over j
and, thus, take N N
RY(1—RY) ]"
wo=| U TR g 1S, (16)
: [Rs(l —gg) T
with R¥ = E,-Hg}ii}/z,uj. Naturally, R = R% +RD, and ﬁw is computed as is shown in
Appendix I. With these definitions, admittedly somewhat circular, one may proceed by first taking
W;as (1/S;;+1/S,;)” ! and computing the corresponding values of R} and R, then applying these to
(16) thus obtaining the second approximations to the weights, etc.
For RR the corresponding function is, naturally,

Xt = [t —rE RROT/[Z;(W,/Z, WV, _ s (17)

with rf and r§ the mutually standardized rates involving the weights
W—[ﬂfs + (RR)/S, -l_l 18
Ol o ks 1j o (18)
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COMPARATIVE ANALYSIS OF TWO RATES 219

Here Rt = R§ (RR), and R§ = Z;W,R,;/Z; W, with R"w computed according to (12). As with RD,
first approximations to the W may be obtained by assuming R} = R$, second approximations by
using the first approximation weights in R¥ and R¥ incorporated in (18), etc.

For OR the stratified score statistic, a generalization of (13), is

{z.w.[ ry=Ry _ ro;—Ry iIF
"7LRy;(1-Ry)) Re;(1—Ry))

Xo = 2[ 1 1 ]Sj- (19)

3 - — — + = ~ =
= -Sllej(l _Ru) SO}ROj(l ”‘jo) Sj_l
with
_ 8,501 =Ry)Ry T

S1jR1;(1 =Ry;)+So;Ro;(1 —Ro;))
(see Appendix II). An alternative formulation of this statistic is (cf. (13))

i

X3 [ZS1(ry,— Rl..ﬂ.]_.z . (20)

-1
5 [ 1 % 1 _] S;
- Sl}‘ilj(l ‘_R;U} SﬂjROj{I *Ro ) Sj_ 1

which can be recognized as that underlying the limits Gart'* gave as the stratified generalization of
the Cornfield limits for unstratified data—here again without the ‘continuity correction’ and with
an unbiased estimator of variance.

Each of the chi-square functions above implies a point estimator for the comparative parameter
at issue—the value for which the corresponding chi-square function takes on the value zero.

It is worthy of note that in the null case of R; = Ry (RD = 0, RR = 1, OR = 1) all three of the
chi-square functions above—X 3 in (15), X 3 in (17),and X 2, in (19) and (20)—reduce to the same
null chi-square,

8,iS0; 2
|:EJ '—US o ("'1;"’0;]}
5 ,

X0= & B (21}
S1;8
3 -r)

J
= (rf _r{*))zf’[zj(PVj/zj"?)zrj(l —r;)(1/8y;+1/S0;)8;/(S; = 1)]

with
Wj = SIJSOJ/ SJ

= (la"(SlJ+ l,I'ISgJ'}_l

This null statistic is recognizable as that given by Cochran'? (with the ML estimator of variance)
and again by Mantel and Haenszel,'® based on derivations without and with conditioning by the
stratum-specific marginal rates, respectively. As it derives from the score statistic for OR
(cf. References 16 and 17, and Appendix II), it is natural that it is uniformly most powerful for the
detection of non-null situations with constant OR over the strata—a property proven expressly by
Birch'® and Radhakrishna.'®
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INCIDENCE DENSITY DATA

When the rate denominators represent population-time of observation (for incidence of events),
the comparative parameters of direct interest can be only RD and RR, exclusive of OR.
For RD the chi-square function still has the form given in (15), but now

Vr=roy = Ruj/T1j+ Ro/To; (22)

with R, i= ﬁw + RDand ﬁoj solved from a quadratic likelihood equation as is shown in Appendix
1. Also, the weights in (16) are replaced by

R} 4
W= [R_(')‘ [T+ I/TOJ‘] (23)

computed as delineated in the context of (16).
For RR, similarly, the chi-square function is still of the form in (17). In it,

Vh’n,—f:.,-{kk) = RU{T“--!—(RR}Z ﬁo;fTi}j (24)

with RU = ﬁoiuun and Iioj derived as is shown in Appendix I. The weights in this context of
incidence densities are
W, = [1/Ty;+ (RR)/Ty;] ! (25)

NUMERICAL EVALUATION

The presentation above includes proposed new methods for the analysis of RD and RR, which were
argued, on theoretical grounds, as superior to the corresponding methods now in common use. It
was also suggested that the proposed methods should compare favourably with ones based on the
likelihood ratio approach.

To supplement theory, we carried out computer simulations for a variety of situations involving
two independent binomials with particular values for the theoretical rates. For each situation, we
generated 10,000 two-by-two tables, computed the 95 per cent intervals for the comparative
parameter for each table, and classified each interval as to whether it failed to cover the theoretical
value of the comparative parameter and, if so, whether the error derived from the lower or the
upper bound.

The results appear in Tables I and II, for RD and RR, respectively. Evidently, the simulations
confirm the theoretical contentions.
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APPENDIX I. RESTRICTED ESTIMATION OF COMPARED RATES

The chi-square functions for all three comparative parameters (RD, RR and OR) involve the need
to estimate the compared rates on the constraint that the comparative parameter at issue has a
particular value. These are the estimates R, and R, as distinct from the empirical values ry and r,.

For analyses directed to RD, the constraint is that R, — R, equals a particular value RD. Thus,

R, = Ro+RD (26)

The value of ﬁo is the one that, subject to this restriction, maximizes the likelihood corresponding
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COMPARATIVE ANALYSIS OF TWO RATES 221

Table I. Error rates (per cent) for 95 per cent confidence intervals for rate difference, separately
for lower bound (ER ), upper bound (ER ) and overall (ER = ER, + ER )

Model Method

Usual* Proposedt Likelihood ratio}

R, Re S S¢ ER, ER, ER ER, ER, ER ER, ER, ER
05 05 10 10 43 40 83 20 20 40 25 25 50
10 50 42 41 83 25 25 50 30 32 62

02 02 25 25 29 31 60 27 28 55 27 29 56
25 125 15 67 82 28 21 49 25 33 58

01 01 50 50 29 31 60 24 26 50 21 32 53
50 250 10 63 73 28 155 43 21 32 53

250 50 62 09 71 122 31 43 31 23 54

065 035 10 10 42 23 65 16 23 39 42 23 65
10 50 64 30 94 20 29 49 35 29 64

035 005 50 s0 27 30 57 25 24 49 26 27 53
50 250 21 33 54 26 20 46 24 23 47

250 50 52 13 65 22 29 51 38 25 63

015 005 50 50 20 40 60 33 20 53 33 27 60
50 250 112 55 67 27 16 43 22 30 52

250 50 63 09 72 12 29 41 40 24 64

® Expression (7).
+ Based on expressions (8) and (9).
1 Based on expression (38).

Table II. Error rates (per cent) for 95 per cent confidence intervals for rate ratio, separately for lower
bound (ER, ), upper bound (ER ), and overall (ER = ER; + ER))

Model Method
Usual* Proposedt Likelihood ratiof
R, R, S, Se ER, ER, ER ER;, ER; ER ER, ER, ER
05 05 10 10 08 09 1-7 20 2:0 40 2-5 2:5 50
10 50 53 02 55 25 25 50 30 29 59
02 02 25 25 12 12 24 27 28 55 27 29 56
25 125 33 05 38 28 21 49 26 32 58
01 01 50 0 15 17 32 24 26 50 30 31 6l
50 250 30 05 35 28 16 44 P 32 53
250 50 05 33 38 12 31 43 31 23 54
0-65 035 10 10 12 41 53 1.8 32 50 33 28 6l
10 50 43 0-6 49 2:3 27 50 31 2:6 57
0-35 0-05 50 50 75 39 114 01 39 40 64 2:5 89
50 250 20 20 40 2T 22 .49 30 20 50
250 50 78 41 119 00 40 490 78 23 101
015 005 50 0 77 27 104 111 31 42 51 25 76
50 250 24 11 35 24 19 43 24 25 49
250 50 76 34 110 01 34 35 69 21 90

® Katz et al.’, method C.
+ Based on expressions (10) and (11).
} Based on expression (38).
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to ¢, and ¢,. In the context of proportion-type rates the likelihood is the product of two binomial
probabilities—that of ¢, on the parameters R, + RD and S, and that of ¢, on Ry and S,. The
derivative of log-likelihood, equated to zero, yields a third-degree likelihood equation:

3
Y, LyRs=0 (27)
k=0
with
L3 = S

Lg = (S[ +2$0)(RD)—S_C
L, = [So(RD)~S —2¢,] (RD)+¢
Ly = ¢o(RD)(1 —RD)

where ¢ = ¢, + ¢,. This equation can be found to have a unique closed-form solution—following
the guidelines set forth by Bronshtein and Samendyayev,® among others. This solution is
Ro = 2p cos (a)— L,/(3Ls) (28)
where
a=(1/3)[r+cos™ " (¢/p*)]

p= +[L3/(BL3)*~L,/(3L;)]"
q=L3/(3L3)* = Ly L,/(6L3) + Lo/(2L5)

with the sign of p chosen so as to have it coincide with that of ¢. For this closed solution the
alternative is to use an iterative procedure with the constraint that 0 < R, +RD < 1.For any given
value of RD, the corresponding values of R, and R are used to derive the variance estimate for the
chi-square at that value of RD (cf. (8) and (9)).

If RR is the object of the analysis, then, naturally,

R, = Ry (RR) (29)

The likelihood involves Ry (RR) in place of R, , and the likelihood equation is of the second degree,
with the solution given in (12).
In analyses for OR, the definition OR = [R; /(1 —R;)]/[Ro/(1 — R,)] implies the constraint
between R, and R,. Specifically, N
2 Ry (OR)
1 . bwiol A
I1+Ry(OR—1)

In the likelihood, R, is replaced by R (OR)/[1 + R, (OR — 1)], and the likelihood equation, of the
second degree, has the solution given in the context of (13).

It is instructive to note that in the context of RD and RR the relation (S, R, + SoRo)/S = r
obtains only on the null condition (RD =0, RR = 1) and at the point estimate (RD = r; —r,
RR = r, /ry), whereas in analyses directed to OR it holds for all values of this comparative
parameter. It may be considered to be for this reason that confidence limits for RD and RR cannot
be set conditionally on the marginal rate, in contrast to limits for OR.*! On the other hand, even if
analyses conditional on the marginal rate are admissible for OR, this viewpoint is not necessary, as
was shown above.

When the data represent incidence densities, the likelihood involves Poisson probabilities (for ¢;.
and c¢) with parameters R;7;. Naturally we still take R; = Ry + RD and R, = Ry (RR) in analyses
of RD and RR, respectively. The estimate of R, for any given value of RD derives from a quadratic
likelihood equation. Thus it is of the form of (12), but the entries are A =T, B = T(RD) —¢, and

(30)
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COMPARATIVE ANALYSIS OF TWO RATES 223

C = —c¢o (RD), with T =T, +T;. In the context of RR the likelihood equation is of the first
degree, and Ry, = ¢/[T, (RR)+T;].

APPENDIX II. CHI-SQUARE FUNCTION BASED ON THE EFFICIENT SCORE

The chi-square functions proposed in this paper for RD and RR focus on r, —(ro + RD) and
ry —ro(RR), respectively—contrasts or ‘scores’ with expectations equal to zero and variance
estimates that depend on R, and R, (Appendix I) as is shown in (8) and (11), respectively. These
scores have the virtue of simplicity, but they are not based on any principle suggesting optimality in
terms of total capture of the comparative information in the data.

Theory, as outlined by Cox and Hinkley® among others, suggests as ‘the efficient score’ the
derivative of the log-likelihood with respect to the comparative parameter at issue, with R, and R,
replaced by R, and R,, respectively. In comparative analysis of two rates this score takes the form

1
P VIR, (31)

where the information element ([;) and partial derivative (R;) are

I; = 5;/[Ri(1-R))]
with P the comparative parameter. It is seen that the efficient score involves the deviation of each of
the two empirical rates from their respective expected values estimated conditionally on P, and that
this deviation is weighted not only by the amount of information in (precision of ) the empirical rate
but also by the extent to which the corresponding theoretical rate reflects (changes with) the
comparative parameter. All of this is very appealing. The expectation of this score is zero, evidently.

Its variance estimator, the negative of the expectation of its derivative (or of the second derivative of
the log-likelihood) evaluated with R; in place of r; is

l - -
Y LR, - g)

i=0

Thus the chi-square function for comparative analysis of two proportion-type rates based on the
efficient score has the general form of

; [(rl—ﬁl)nfi’l+(ro—§0)foé3]2 _
P Ry, - 2+ o (Ro),, - 2,)21S/S - 1)

the particulars of the function depending on what the comparative parameter (P) is. For stratified
data the corresponding function is, as a simple extension,

s __{Zr—Ri)IRy, +(ro; = Roj) Io; Ro; 1)
Fg [ (R, = &,)* + 1o (Rojlr,, = &,)21S;/(S; = 1)
In the context of P = OR we have as Rj;

(32)

(33)

"GO, -4,
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Roi__ = 8,;[(1 =Ry Ry ) 4
A(OR) 8, R,;(1=Ry;)+So;Ro;(1 = Ry;) '
_ 3Ry,
¢(OR)|,, _ &,

These may be derived as (9P/0R;;)™* with P = OR = [Ry;/(1 = R;;}))/[Ro;/(1 —=R,;)] and the
relation of S{; Ry + So; Ro; = S;r; (which holds for OR but not for RR or RD). R,; and R,; are
based on the data from the ith stratum according to the specifications in (13). Similarly, the
stratum-specific information elements (1"J and !oj) in the statistic in (33) are based on the stratum-
specific data, using the definition in the context of (31). In these terms, the chi-square function for
OR based on the efficient score becomes the one given in (19) and (20).
If the comparative parameter is RR, then the derivatives of the restricted estimators of rate take

the forms

@Ry — [Su("l; 1;]‘*‘50;-"01“— 1;)]2

¢(RR) Si[Sy(ry;— IJ){rJ'_ RU) + So;(1 “Ru){rj_ rOlej]]

5 - N (35)
aRoj =y s R&;[SUU - ROJ) = Sc.j [r_,- = Roj)]?._
a(RR} S;[Slj(l —ROJ)(?}‘—r!)ROJ)‘i"SDj(rOj—‘ROJ){r}_ROJ)]

These may again be derived as {6P/FR,,) !, but here P=RR = Ry;[8y;(ry;— RU}+S°_,(1
~ Ry )VS14r1;(ri= Ryj)+ Sosr0;(1 — Ry )] for éR,;/0(RR) and P = RR = [Sy;ry,(1 - Ro))
+S80;(roj — Roj)J/{Ro;[S1;(1 = Roj) + Sp;(ro; — ROJ)]} for 6R,;/06(RR), these relations being the
solutions for RR of dlog L(R;;, RR)/é(R;;) = 0. As obvious corollaries, for the variance in the chi-
square function,

R, _ So;[(1—Ry;) R,
a(RR} r‘.}.zﬁu Sj(]—R1j)(rj—R1jR{)j}
5 (36)
Ro; —RE;[S1;(1-Ro))+ +So; (r;— F R,;))?
¢(RR) r{,-=RU- Sj81;(1— Ro;)(" RIJR(]))
The null chi-square can be found upon substitution of R;; = r;, to be
8,;8
[ZJ S (I.l_.‘ 0j ){',1.‘I rﬂj)]z
X = e (37)
RR=1 " Sljsoj :
4 (S =1 (1—r;)

In contrast to the score statistic for OR =1 in (21), this statistic for RR = 1 is seen to be
problematic: any stratum with 7; = 1 makes an infinite contribution to both the numerator and the
denominator. (Perhaps a reasonable statistic could be based on empirical Bayes approach to the
nuisance parameters, especially by the use of a Beta distribution model for them.)

With RD the comparative parameter, the values of dR;;/é(RD) for any given RD need to be
derived numerically—as the change in R;; from RD to RD + ¢ divided by ¢, with ¢ = 0-01, say. For
the denominator of the chi-square funchon the corresponding values conditional on ry; = R;; are
derived with Rlj based on (27) with S“R i+ SOJ,RW substituted for ¢;and S,; RGJ for co;. But dgam.
strata with r; = 1 or r; = 0, while mformatwe about RD to a finite degree make [;;in (33) equal to
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infinity for either i = 1 ori = 0 (or both)}—indicating that this approach is questionable in general,
at least without resorting to Bayesian techniques.

APPENDIX ITI. CHI-SQUARE FUNCTION BASED ON LIKELIHOOD RATIO

When based on the likelihood ratio, the chi-square function for the comparison of two proportions
is of the following general form:

Ly, ro)
L(R,, Ro)

o[ (=) (&) (2]
R, 1=K, R,/ \1-R,

When P = RD, the values of R, and I':'o (for any given value of RD) are derived according to (26)
and (28). For P = RR the corresponding specifications are (29) and (12), whereas for OR they are
given in (30) and (13).

The extension to stratified data is straightforward:

X:; =2 log{nj [(_’;i)“lj (]—_-p“lrj)Su_(‘u (_};ﬂ)mj (]—__{hﬁj)so_i—('uj]}
Ryj 1Ry Ro; 1 —Ry;

5T -1y
=2%,%, [Cij log E—fﬂ’ (8 —cy) log 1— fi:]

1)

Xi=2log
(38)

(39

The performance of results from this approach is theoretically, and also empirically (Tables I
and II), somewhat inferior to those based on the approaches advocated in the main presentation
above, especially in the context of appreciable discrepancies between the empirical and theoretical
rates.
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