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ABSTRACT
OBJECTIVE

To quantify the background incidence rates of 15 
prespecified adverse events of special interest (AESIs) 
associated with covid-19 vaccines.
DESIGN

Multinational network cohort study.
SETTING

Electronic health records and health claims data from 
eight countries: Australia, France, Germany, Japan, 
the Netherlands, Spain, the United Kingdom, and the 
United States, mapped to a common data model.
PARTICIPANTS

126 661 070 people observed for at least 365 days 
before 1 January 2017, 2018, or 2019 from 13 
databases.
MAIN OUTCOME MEASURES

Events of interests were 15 prespecified AESIs 
(non-haemorrhagic and haemorrhagic stroke, 
acute myocardial infarction, deep vein thrombosis, 
pulmonary embolism, anaphylaxis, Bell’s palsy, 
myocarditis or pericarditis, narcolepsy, appendicitis, 
immune thrombocytopenia, disseminated 
intravascular coagulation, encephalomyelitis 
(including acute disseminated encephalomyelitis), 
Guillain-Barré syndrome, and transverse myelitis). 
Incidence rates of AESIs were stratified by age, sex, 

and database. Rates were pooled across databases 
using random effects meta-analyses and classified 
according to the frequency categories of the Council 
for International Organizations of Medical Sciences.
RESULTS

Background rates varied greatly between databases. 
Deep vein thrombosis ranged from 387 (95% 
confidence interval 370 to 404) per 100 000 person 
years in UK CPRD GOLD data to 1443 (1416 to 1470) 
per 100 000 person years in US IBM MarketScan Multi-
State Medicaid data among women aged 65 to 74 
years. Some AESIs increased with age. For example, 
myocardial infarction rates in men increased from 
28 (27 to 29) per 100 000 person years among those 
aged 18-34 years to 1400 (1374 to 1427) per 100 000 
person years in those older than 85 years in US Optum 
electronic health record data. Other AESIs were more 
common in young people. For example, rates of 
anaphylaxis among boys and men were 78 (75 to 80) 
per 100 000 person years in those aged 6-17 years 
and 8 (6 to 10) per 100 000 person years in those 
older than 85 years in Optum electronic health record 
data. Meta-analytic estimates of AESI rates were 
classified according to age and sex.
CONCLUSION

This study found large variations in the observed 
rates of AESIs by age group and sex, showing the 
need for stratification or standardisation before using 
background rates for safety surveillance. Considerable 
population level heterogeneity in AESI rates was found 
between databases.

Introduction
On 11 March 2020, the World Health Organization 
declared the outbreak of covid-19, caused by the SARS-
CoV-2 virus, a global pandemic. As of March 2021, 
more than 100 million confirmed cases and 2.7 million 
deaths have been reported worldwide.1 Vaccines 
for covid-19 have been developed at unprecedented 
speed, with phase III clinical efficacy trials reporting 
results for some vaccines less than a year after WHO 
declared the pandemic. Since December 2020, several 
vaccines have been authorised by regulators such as 
the European Medicines Agency, the US Food and Drug 
Administration, and the UK Medicines and Healthcare 
products Regulatory Agency. Large scale immunisation 
programmes are ongoing worldwide.

Although the speed of vaccine development should 
be acknowledged, most vaccines have received 
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WHAT IS ALREADY KNOWN ON THIS TOPIC
Background rates of adverse events of special interest (AESIs) have historically 
played an important role in monitoring vaccine safety
Most studies focused on single or very few events and used different study 
designs, and none focused on specific AESIs for covid-19 vaccines
No international transcontinental study on background rates of covid-19 vaccine 
AESIs using the same definitions, data model, and analysis across all databases 
have been reported

WHAT THIS STUDY ADDS
This study found considerable heterogeneity between geographies and 
databases, suggesting caution when interpreting the differences between 
observed and expected rates
If possible, the same data source should be used to compare post-covid-19 
vaccine (observed) and background (expected) AESI rates for vaccine 
surveillance
Considerable variability was also found in observed rates of AESIs between age 
groups and sex, showing the need for standardisation if background rates are 
used for surveillance purposes
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approval for emergency use only, based on limited 
trial data. Uncertainty remains about the safety and 
effectiveness of these vaccines in populations other 
than those analysed in trials. As with all medicinal 
products, vaccine safety must continue to be monitored 
after regulatory authorisation to complement what 
was learnt during clinical development. Spontaneous 
adverse event reporting is a foundational component 
of post-approval pharmacovigilance activities to 
ensure the safe and appropriate use of medicinal 
products. Observational healthcare data captured 
during routine clinical care, such as electronic health 
records and administrative claims, can augment 
pharmacovigilance by providing real world information 
about potential adverse events and the rates of such 
events in populations of interest. Background rates of 
adverse events have historically played an important 
role in monitoring the safety of vaccines by serving as 
a baseline comparator for observed rates among those 
vaccinated.2 3 Each new vaccine has potential adverse 
events of special interest (AESIs) that warrant focused 
evaluation, based on what is known about previous 
vaccines and a vaccine’s development.

Regulatory agencies around the world have been 
preparing safety surveillance strategies for covid-19 
vaccines. The FDA Center for Biologics Evaluation and 
Research published a protocol on background AESI 
rates to monitor the safety of covid-19 vaccines.4 The 
vACCine covid-19 monitoring readinESS (ACCESS) 
project funded by the EMA also included estimation 
of background AESI rates in its protocol.5 The WHO 
Council for International Organizations of Medical 
Sciences recommends using a local population’s own 
data when defining background rates of AESIs for 
comparison.6 The Observational Health Data Sciences 
and Informatics community therefore collaborated 
to design and execute an international open science 
study to characterise the background rates of AESIs 
potentially associated with covid-19 vaccines. We 
carried out this population based network retrospective 
cohort study, using observational data from 13 
databases in eight countries—Australia, France, 
Germany, Japan, the Netherlands, Spain, the UK, and 
the US—to describe, in an epidemiological context, 
AESIs potentially associated with covid-19 vaccines.

Methods
Data sources

Data were obtained from 13 databases—eight compri-
sing electronic health records and five comprising 
administrative claims.

The electronic health record databases were: 
IQVIA Australia Electronic Medical Records (IQVIA_
AUSTRALIA); Integrated Primary Care Information 
(IPCI_NETHERLANDS), a primary care records data-
base from the Netherlands7; IQVIA Longitudinal 
Patient Data France (IQVIA_FRANCE)8; IQVIA Disease 
Analyser Germany (IQVIA_GERMANY); Information 
System for Research in Primary Care (SIDIAP_H_
SPAIN),9 a primary care records database that covers 
more than 80% of the population of Catalonia, Spain; 

Clinical Practice Research Datalink (CPRD_GOLD_UK), 
which consists of data collected from UK primary care 
for all ages10; Columbia University Irving Medical 
Center (CUMC_US), which covers more than 4.5 million 
people treated at the New York-Presbyterian Hospital/
Columbia University Irving Medical Center in the US; 
and Optum De-Identified Electronic Health Record 
Dataset (OPTUM_EHR_US), which covers more than 
103 million patients and more than 7000 hospitals 
and clinics across the US.11

The claims based databases were the Japan 
Medical Data Center (JMDC_JAPAN)12 and four US 
administrative claims databases: IBM MarketScan 
Commercial Claims and Encounters Database (CCAE_
US),13 IBM MarketScan Medicare Supplemental and 
Coordination of Benefits Database (MDCR_US), IBM 
MarketScan Multi-State Medicaid Database (MDCD_
US), and Optum De-Identified Clinformatics Data Mart 
Database–Socio-Economic Status (OPTUM_SES_US).11

The CPRD-GOLD (UK), IQVIA (France, Germany, 
and Australia), and IPCI (the Netherlands) databases 
included primary care data, not information on hospital 
admissions. Regional electronic health records data 
such as in the CUMC_US might incompletely capture 
medical events that are recorded in other healthcare 
institutions. The claims based sources offered rela-
tively complete data on inpatient, outpatient, and 
prescriptions and treatment, but lacked measurement 
data and laboratory results (see table 1 and appendix 
table 1 for detailed descriptions of the databases).

All datasets were previously mapped to the Obser-
vational Medical Outcomes Partnership common data 
model, which is maintained by the Observational 
Health Data Sciences and Informatics network, an 
international open science initiative to generate 
reproducible evidence from observational data.14 
This initiative brings together hundreds of researchers 
from 30 countries, working with health records from 
around 600 million unique patients in its distributed 
database. The analysis code was distributed across 
all centres contributing to Observational Health Data 
Sciences and Informatics without sharing patient level  
data.15 16

Study participants

The study period was from 1 January 2017 to 
31 December 2019. We defined the target at risk 
population as people who were observed on 1 January 
2017, 1 January 2018, or 1 January 2019 and were 
observed for at least 365 days before this observation 
date. The 1 January each year was defined as the index 
date.

Events of interest

The events of interest in this study were AESIs that 
might need evaluation after covid-19 vaccination. 
This list of outcomes was based on the protocol 
published by the FDA Center for Biologics Evaluation 
and Research, the prioritised covid-19 vaccine AESI 
list by the Brighton Collaboration, and previous 
studies.4 17 We included 15 events: non-haemorrhagic 
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and haemorrhagic stroke, acute myocardial infarction, 
deep vein thrombosis, pulmonary embolism, 
anaphylaxis, Bell’s palsy, myocarditis or pericarditis, 
narcolepsy, appendicitis, immune thrombocytopenia, 
disseminated intravascular coagulation, encepha-
lomyelitis (including acute disseminated encepha-
lomyelitis), Guillain-Barré syndrome, and transverse 
myelitis.4

Events were identified by records of the occurrence 
of conditions based on predefined phenotyping 
algorithms (eg, diagnosis codes from claims or 
diagnosis codes and problem lists from electronic 
health records). Definitions for encephalomyelitis, 
non-haemorrhagic and haemorrhagic stroke, and 
acute myocardial infarction also required the record 
to occur within an inpatient setting in any diagnosis 
positions, whereas the definition for Guillain-Barré 
syndrome required the condition to be recorded in an 
inpatient setting in the primary position. Appendix 
tables 2 and 3 present the full specifications of 
all phenotype definitions, including source codes 
(original codes used in the database) and standard 
concepts (normative expressions used to represent a 
unique clinical entity within the Observational Medical 
Outcomes Partnership common data model, which 
were mostly SNOMED (Systematized Nomenclature of 
Medicine) codes in this study).

We defined a “clean window” period before each 
index date, during which qualifying events (AESIs) 
could not be observed. If an AESI was observed during 
this period, the participant did not enter the study 
cohort for that event. If an individual had a qualified 
event during follow-up, this participant would 
contribute to the person time of that event cohort after 
the clean window continually until censored from the 
cohort.

Figure 1 shows the cohort entry, follow-up, and 
event definitions. In keeping with the FDA protocol, 
the clean window was 365 days for all events except 
anaphylaxis (30 days) and facial nerve palsy and 
encephalomyelitis (183 days).4

As the CPRD-GOLD (UK), IQVIA (France, Germany, 
and Australia), and IPCI (the Netherlands) databases 
only included primary care data, we did not use them 
for events where definition required an inpatient 
diagnosis.

Statistical analysis

We defined the time at risk as a 365 day period after 
the index date. Eligible people contributed time at risk 
from 1 January to 31 December for each qualifying 
year in 2017 to 2019. Participants were censored if 
an event occurred during that event’s clean window, 
at death (if available in the data source), or at the end 
of their observation period in the database (fig 1). One 
participant could contribute more than one event. 
To avoid duplicate counts we used outcome specific 
prespecified clean windows of 30 to 365 days.

Incidence rates were estimated as the total number 
of events divided by the person time at risk per 100 000 
person years. We calculated the age and sex specific 

incidence rates in each database and report all rates 
when the event counts exceeded a minimum cell count 
of 5. Age was calculated as year of index date minus 
year of birth and was partitioned into eight mutually 
exclusive age groups (in years): 1-5, 6-17, 18-34, 
35-45, 55-64, 65-74, 75-84, and 85 and older. Age-
sex specific rates of each AESI were pooled across all
databases using a random effects meta-analysis, with
the DerSimonian-Laird method to estimate variance
between databases.18 We estimated 95% prediction
intervals using the R package “meta”.19 The prediction 
interval reflects the expected uncertainty if an
estimate rate from a new study is included in the meta-
analysis.20

Meta-analytic age and sex specific rates were 
classified using the WHO Council for International 
Organizations of Medical Sciences thresholds: 
very common (≥1/10), common (<1/10 to ≥1/100), 
uncommon (<1/100 to ≥1/1000), rare (<1/1000 to 
≥1/10 000), and very rare (<1/10 000).21

All statistical analyses were performed in R 
software.22 The study protocol and analysis code 
are available at https://github.com/ohdsi-studies/
Covid19VaccineAesiIncidenceCharacterization.

Patient and public involvement

No patients or members of the public were directly 
involved in the design or analysis of the reported data. 
Because of covid-19 related restrictions, it has been 
difficult to interact with relevant patient and public 
representatives. Some of the contributing databases 
did, however, involve patients in the evaluation of our 
data access application.

Results
From the 13 databases, 126 661 070 people contributed 
227 043 370 person years of follow-up. The Optum De-
Identified Electronic Health Record Dataset (OPTUM_
EHR_US) contributed the largest number of patients 
(n=40 955 085), followed by the IBM MarketScan 
Commercial Claims and Encounters Database (CCAE_
US). Each database captured important population 
demographics and collectively represented all age and 
sex subgroups from eight countries (table 1).

Most of the databases included more female than 
male patients (ranging from 50.5% female patients 
in SIDIAP_H_SPAIN to 57.5% in IQVIA_GERMANY), 
except for JMDC_JAPAN (45.0% female patients). 
The CCAE_US database included patients aged 0-74 
years, whereas the MDCR_US database only included 
patients older than 65 years. The other databases 
included patients of all ages. Patients aged 35-54 years 
accounted for the largest proportion of the population 
in most databases (from 23.5% in OPEUM_SES_US to 
35.8% in JMDC_JAPAN). Patients aged 18-34 years, 
however, accounted for the largest proportion (22.3%) 
of the IBM MarketScan Multi-State Medicaid Database 
(MDCD_US) database. The proportion of patients aged 
65 years and older ranged from 32.1% in the OPTUM_
SES_US database to less than 10% in the CCAE_US, 
JMDC_JAPAN, and MDCD_US databases. Patients 
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younger than 18 years accounted for 45.8% of the 
MDCD_US database.

Substantial heterogeneity was observed by age 
group and sex in the database specific estimates of 
each event but similar age and sex trends in most 
databases and the pooled rates (fig 2). For example, 
the incidence rates of deep vein thrombosis increased 
with age. In the OPTUM_SES_US data, the incidence 
rates increased from 20 (95% confidence interval 19 
to 22) per 100 000 person years among boys aged 
6-17 years to 2030 (2009 to 2051) per 100 000 person 
years among men aged 75-84 years (see appendix
table 4). Similarly, myocardial infarction rates among
men increased from 28 (95% confidence interval 27
to 29) per 100 000 person years in those aged 18-34
years to 1400 (1374 to 1427) per 100 000 person years 
in those older than 85 years in the OPTUM_EHR_US
data. The incidence rates for haemorrhagic and non-
haemorrhagic stroke, pulmonary embolism, Bell’s
palsy, immune thrombocytopenia, Guillain-Barré syn-
drome, and disseminated intravascular coagulation
also increased with age.

The rates of haemorrhagic stroke were higher in 
male participants than female participants in most 
age groups. For example, the incidence rates among 
those aged 65-74 years in the MDCR_US database 
were 251 (238 to 265) per 100 000 person years for 
male participants and 170 (160 to 180) per 100 000 
person years for female participants. The incidence 
rates of acute myocardial infraction, myocarditis or 
pericarditis, immune thrombocytopenia, and Guillain-
Barré syndrome were also higher in male participants 
than female participants.

Figure 3 summarises the pooled incidence rates 
of the 15 AESIs, stratified by age and sex, based 
on prediction intervals from a meta-analysis of the 
database estimates. Each age and sex subgroup 
was classified using the Council for International 
Organizations of Medical Sciences adverse event 
frequency system (very common, common, 

uncommon, rare, or very rare). The AESIs studied 
spanned the continuum of possible frequencies. The 
incidence of several events varied substantially by 
age and was therefore classified differently at different 
ages. For example, deep vein thrombosis was rare 
in boy and girl participants younger than 18 years, 
uncommon in those aged 35-84 years, and common in 
those 85 years and older. Acute myocardial infarction 
was very rare (<1/10 000) in women younger than 35 
years, rare (<1/1000 to ≥1/10 000) in women aged 35-
54 years, uncommon (<1/100 to ≥1/1000) in both men 
and women aged 55-84 years, and common (<1/10 to 
≥1/100) in men and women aged 85 years and older. 
Anaphylaxis, Bell’s palsy, appendicitis, and immune 
thrombocytopenia were largely rare in all age groups, 
although appendicitis was uncommon in those aged 
6-34 years. Guillain-Barré syndrome and transverse
myelitis were very rare in nearly all subgroups.

The rates recorded for deep vein thrombosis 
highlight the population level variation. Thirteen 
database estimates were obtained for the incidence in 
women aged 65-74 years, ranging from 387 (370 to 
404) per 100 000 person years in CPRD-GOLD to 1443
(1416 to 1470) per 100 000 person years in MDCD_US. 
The rates in eight databases were less than 650 per
100 000 person years (CPRD-GOLD in the UK; CUIMC
in the US; IPCI in the Netherlands; IQVIA in Australia,
France, and Germany; JMDC in Japan; and SIDIAP-H
in Spain), whereas the rates in three databases were
more than twice as high, at more than 1300 per
100 000 person years (MDCD, MDCR, and OPTUM-SES
in the US). For women aged 35-54 years, the incidence 
rates ranged from 159 (151 to 167) per 100 000
person years in Spain (SIDIAP) to 866 (854 to 878)
per 100 000 person years in the US (MDCD). Among
women aged 75-84 years, the lowest incidence rate
was 585 (559 to 612) per 100 000 person years (CPRD-
GOLD in the UK) and the highest was 2167 (2126 to
2210) per 100 000 person years (MDCR in the US).
No consistent patterns could be found to explain why

First cohort
entry:

1 Jan 2017

Clean period with
continuous observation

and no event

31 Dec
2019

201920182017

365 days clean window

End of
observation
period

Observed/enrolment in database
Person time contributed

Follow up until: event, death, or end of observation period
Event

365 days time at risk

X

X

X

Fig 1 | Study design
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certain databases yielded higher or lower rates across 
outcomes. Database specific rates are shown in figure 
2, and the raw numbers are available in appendix table 
4 and our interactive web app (https://data.ohdsi.org/
Covid19VaccineAesiIncidenceCharacterization/).

Discussion
We conducted a multinational network cohort 
study on the descriptive epidemiology of the AESIs 

prioritised for post-marketing surveillance of covid-19 
vaccines. We report background rates of deep vein 
thrombosis, pulmonary embolism, stroke, immune 
thrombocytopenia, and disseminated intravascular 
coagulation. These events are particularly relevant for 
covid-19 vaccines as the SARS-COV-2 virus has been 
observed to affect coagulopathy.23-26 We assessed 
the incidence rates of 15 AESIs across 13 databases, 
eight countries, and four continents. We observed 
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Fig 2 | Age and sex stratified incidence rates for 15 adverse events of special interest by database. CCAE_US=IBM MarketScan Commercial 

Claims and Encounters Database, CPRD_GOLD_UK=Clinical Practice Research Datalink; CUMC_US=Columbia University Irving Medical Center; 

IPCI_NETHERLANDS=Integrated Primary Care Information; IQVIA_AUSTRALIA=IQVIA Australia Electronic Medical Records; IQVIA_FRANCE=IQVIA 

Longitudinal Patient Data France; IQVIA_GERMANY=IQVIA Disease Analyser Germany; JMDC_JAPAN=Japan Medical Data Center, MDCD_US=IBM 

MarketScan Multi-State Medicaid Database, MDCR_US=IBM MarketScan Medicare Supplemental and Coordination of Benefits Database; OPTUM_

EHR_US=Optum De-Identified Electronic Health Record Dataset; OPTUM_SES_US=Optum De-Identified Clinformatics Data Mart Database-Socio-

Economic Status; SIDIAP_H_SPAIN=Information System for Research in Primary Care-Hospitalization Linked Data
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considerable variability with age and sex, emphasising 
the need for standardisation or stratification of the 
background rates used for vaccine surveillance. We 
found substantial heterogeneity between databases, 
suggesting that, where possible, post-covid-19 vaccine 
rates should be compared with background, or 
historical, rates obtained from the same dataset.

Research in context

In vaccine safety surveillance, background incidence 
rates have been used to estimate the expected number 
of events in the general population, which is also 
known as the historical rates comparison method.3 27 
Several vaccine safety surveillance guidelines, such as 
the European Network of Centres of Pharmacoepide- 

Outcomes by sex 1 5 years

Council of International Organizations of Medical Sciences frequency classification

6 17 years 18 34 years 35 54 years 65 74 years 75 84 years

Incidence rate per 100 000 person years (95% prediction interval)

Non-haemorrhagic stroke

Female

55 64 years ≥85 years

4 (2 to 9) 4 (1 to 12) 18 (4 to 86) 83 (11 to 617) 217 (25 to 1882) 413 (77 to 2198) 874 (197 to 3884) 1523 (320 to 7239)

Male 6 (2 to 20) 5 (2 to 10) 17 (4 to 75) 119 (21 to 664) 370 (67 to 2046) 612 (145 to 2578) 1063 (242 to 4662) 1495 (260 to 8607)

Deep vein thrombosis

Female 12 (3 to 50) 18 (8 to 40) 140 (66 to 298) 306 (117 to 797) 428 (150 to 1224) 683 (257 to 1820) 975 (360 to 2642) 1206 (407 to 3572)

Male 14 (4 to 55) 14 (6 to 32) 80 (28 to 228) 272 (88 to 836) 499 (194 to 1289) 695 (250 to 1931) 831 (254 to 2720) 1003 (278 to 3616)

Haemorrhagic stroke

Female 7 (2 to 28) 5 (2 to 16) 13 (4 to 47) 36 (7 to 175) 77 (15 to 389) 124 (29 to 527) 249 (56 to 1108) 412 (85 to 1986)

Male 8 (2 to 43) 8 (3 to 24) 19 (5 to 76) 51 (10 to 268) 115 (23 to 562) 178 (49 to 650) 312 (73 to 1340) 506 (86 to 2961)

Pulmonary embolism

Female 1 (<1 to 36) 3 (1 to 13) 38 (11 to 124) 81 (21 to 309) 125 (33 to 470) 217 (77 to 611) 358 (135 to 951) 427 (154 to 1184)

Male 1 (<1 to 24) 2 (<1 to 12) 20 (5 to 80) 80 (20 to 318) 171 (59 to 497) 256 (96 to 683) 349 (119 to 1030) 398 (124 to 1277)

Appendicitis

Female 32 (12 to 84) 154 (55 to 430) 134 (69 to 260) 85 (42 to 172) 66 (28 to 156) 53 (20 to 143) 40 (13 to 124) 35 (12 to 98)

Male 38 (17 to 85) 194 (101 to 372) 146 (81 to 266) 88 (49 to 159) 65 (32 to 132) 57 (23 to 144) 47 (15 to 152) 45 (14 to 143)

Bell’s palsy

Female 15 (9 to 27) 25 (12 to 51) 44 (23 to 84) 61 (26 to 140) 76 (31 to 184) 86 (29 to 256) 101 (31 to 330) 92 (31 to 274)

Male 15 (10 to 24) 21 (13 to 34) 43 (29 to 64) 68 (37 to 125) 86 (43 to 172) 94 (35 to 252) 92 (29 to 291) 100 (34 to 292)

Anaphylaxis

Female 49 (16 to 150) 50 (16 to 154) 39 (16 to 95) 34 (13 to 91) 35 (14 to 85) 29 (11 to 76) 23 (7 to 73) 12 (4 to 36)

Male 74 (26 to 209) 56 (18 to 175) 29 (14 to 63) 24 (11 to 53) 25 (11 to 53) 24 (9 to 68) 18 (7 to 49) 10 (2 to 50)

Immune thrombocytopenia

Female 12 (8 to 19) 9 (4 to 21) 14 (6 to 36) 15 (5 to 43) 18 (6 to 53) 25 (8 to 82) 30 (8 to 110) 36 (11 to 118)

Male 17 (12 to 23) 8 (3 to 19) 8 (2 to 23) 10 (3 to 35) 19 (6 to 57) 30 (9 to 105) 41 (10 to 170) 56 (15 to 210)

Myocarditis or pericarditis

Female 6 (1 to 25) 7 (2 to 21) 16 (8 to 32) 22 (9 to 53) 31 (13 to 72) 35 (12 to 97) 39 (11 to 138) 34 (8 to 143)

Male 7 (1 to 32) 11 (5 to 24) 37 (16 to 88) 37 (16 to 87) 45 (20 to 102) 49 (17 to 139) 54 (15 to 193) 41 (9 to 193)

Disseminated intravascular coagulation

Female 2 (<1 to 104) 2 (<1 to 48) 4 (<1 to 99) 5 (<1 to 75) 10 (1 to 89) 14 (2 to 97) 19 (4 to 94) 16 (3 to 82)

Male 3 (<1 to 137) 2 (<1 to 44) 4 (<1 to 31) 5 (1 to 56) 12 (1 to 120) 17 (2 to 154) 23 (4 to 152) 24 (5 to 126)

Guillain-Barré syndrome

Female 1 (<1 to 8) 1 (<1 to 2) 3 (1 to 5) 3 (1 to 11) 5 (1 to 18) 6 (2 to 19) 6 (3 to 16) 7 (2 to 22)

Male 2 (<1 to 18) 1 (<1 to 3) 2 (1 to 4) 4 (2 to 7) 7 (4 to 14) 8 (3 to 25) 11 (3 to 40) 12 (2 to 68)

Transverse myelitis

Female 1 (<1 to 3) 1 (<1 to 3) 3 (1 to 8) 4 (1 to 12) 4 (2 to 13) 4 (2 to 13) 4 (1 to 11) 2 (1 to 9)

Male 1 (<1 to 2)

Very rare (<1/10 000) Rare (<1/1000 to ≥1/10 000) Uncommon (<1/100 to ≥1/1000) Common (<1/10 to ≥1/100) Very common (≥1/10)

1 (<1 to 3) 2 (1 to 6) 3 (1 to 10) 4 (1 to 10) 4 (1 to 11) 4 (1 to 13) 4 (1 to 11)

Encephalomyelitis

Female 5 (2 to 15) 5 (2 to 16) 5 (2 to 19) 6 (1 to 44) 9 (1 to 61) 11 (2 to 62) 12 (2 to 77) 14 (2 to 100)

Male 5 (2 to 12) 5 (2 to 14) 5 (2 to 17) 7 (1 to 55) 12 (3 to 58) 16 (3 to 73) 18 (3 to 101) 16 (1 to 180)

Narcolepsy

Female 1 (<1 to 5) 7 (3 to 17) 15 (4 to 52) 11 (2 to 55) 9 (2 to 42) 10 (2 to 46) 8 (1 to 49) 9 (2 to 42)

Male 1 (<1 to 5) 6 (2 to 18) 13 (4 to 40) 10 (2 to 47) 11 (3 to 44) 10 (2 to 50) 10 (2 to 68) 10 (2 to 60)

Acute myocardial infarction

Female <1 (<1 to 1) <1 (<1 to 1) 6 (1 to 49) 54 (7 to 430) 171 (24 to 1235) 312 (76 to 1280) 617 (184 to 2069) 1144 (313 to 4184)

Male <1 (<1 to 1) 1 (1 to 1) 16 (4 to 72) 172 (40 to 740) 467 (135 to 1611) 653 (214 to 1994) 934 (290 to 3013) 1514 (356 to 6432)

Fig 3 | Pooled estimated age and sex stratified incidence rates per 100 000 person years (95% prediction intervals), calculated from meta-analyses
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miology and Pharmacovigilance, suggest using this 
historical rate comparison method, as it increases 
statistical power to detect rare events and helps to 
detect signals sooner than other methods. This method 
has been widely implemented in many countries and 
by many organisations, including the Vaccine Safety 
Datalink project in the US28 and the Vaccine Adverse 
Event Surveillance and Communication project in 
Europe.3 These background rates are often obtained 
from the literature or healthcare databases. However, 
use of historical rate comparisons has some limitations 
owing to the methods used to obtain the rates, case 
and population definitions, differences in clinical 
codes, and geographical and temporal variations.28 
We overcame these common limitations by calculating 
the presented estimates using the same setting and 
common analysis procedures, phenotyping algorithms, 
and common data model.

We found substantial population level heterogeneity 
across data sources for all events, even after 
standardising outcome definitions and stratifying 
by age and sex. For example, we observed about a 
threefold difference between the highest and lowest 
incidence rates for deep vein thrombosis measured 
in each database. Previous studies using one or a 
small number of databases have also observed these 
variations. US based studies, for example, recorded 
incidence rates per 100 000 person years for idiopathic 
thrombocytopenia of around 3 among men and women 
aged 26-62 years,29 9 among those aged 25-44 years, 
and 12 among those aged 45-64 years.30 We estimated 
incidence rates of transverse myelitis ranging from 1 to 
4 per 100 000 person years in meta-analyses, depend 
on age and sex strata. Previous studies have reported 
overall incidence rates of transverse myelitis ranging 
from 0.4 to 4.6 per 100 000 person years.27 31

Recorded rates of Bell’s palsy among those older 
than 65 years have ranged from 4.6 per 100 000 
person years in Italian data to 174 per 100 000 person 
years in US data.30 32 We found similar rates to those 
previously published using US claims databases and 
UK general practice data, but higher rates when using 
Spanish data. A previous study using data from regions 
in Spain not captured by the SIDIAP database found an 
incidence rate of 63 per 100 000 person years among 
those older than 65 years.32 We observed rates of 131 
and 182 per 100 000 person years in women and men 
aged 65-74 years, respectively, using SIDIAP Spanish 
data (SIDIAP_H_SPAIN). A US study found rates of 
narcolepsy between 31 and 38 per 100 000 person 
years among those aged 25-64 years, whereas studies 
based on European data have found much lower rates 
of between 0.2 and 2.5 per 100 000 person years for 
the same age group.3 30 32 We also found higher rates 
of narcolepsy in US databases than those from other 
countries. Recently reported data from the ACCESS 
project also showed heterogeneity in background 
rates.5 This heterogeneity must be considered when 
comparing rates across populations.

Most of the studied outcomes also had considerable 
within source patient level heterogeneity that followed 

age and sex patterns. We observed that the rates of 
cardiovascular diseases such as acute myocardial 
infarction, haemorrhagic and non-haemorrhagic 
stroke, deep vein thrombosis, and pulmonary 
embolism increased with age. The incidence of 
Guillain-Barré syndrome and Bell’s palsy also 
increased with age. Narcolepsy and appendicitis were 
more common in younger populations. The patterns 
observed in our study were generally comparable with 
those of previous reports.2 3 29 30 32-34 Stratification by 
age and sex and standardisation are likely to be useful 
analytical strategies to reduce confounding when 
incidence rates are compared across populations. The 
observed magnitude of heterogeneity across sources 
within age and sex subgroups, however, suggests 
that residual patient level differences will remain, 
including differences in the distributions of other risk 
factors, such as comorbidities and medication use.

Comparing published results can be complicated 
by differing study methods, including the time-at-risk 
definition, study period, event definitions, population 
coverage, calendar year, and geographical location.35 
Different subgroup definitions also make direct 
comparison difficult. Previous studies of Guillain-
Barré syndrome, for example, have used age strata that 
do not fully overlap with each other.25 29 32 36 37 As we 
used the same definitions, data model, and analysis 
with all of our studied databases, the heterogeneity we 
observed cannot be attributed to variability in analysis. 
This remaining heterogeneity might have resulted from 
differences in the underlying populations, healthcare 
systems, and data capture processes. Although some 
variability might have been due to systematic error, 
selection bias, or differential outcome measurement 
error between databases, some could reflect true 
population differences, such as socioeconomic status 
and comorbidities.

As we observed notable differences in incidence 
rates by age, sex, and database, caution is needed 
when incidence rates are compared across time 
or populations. Incidence rates from different 
sources might be subject to substantial systematic 
error. Given this heterogeneity, the reported 95% 
confidence intervals for the database specific rates 
in our study cannot reflect the systematic errors in 
the rate estimation. The notably wide prediction 
intervals for each age and sex subgroup also reflect the 
substantial population level heterogeneity observed 
across sources. We observed large variations between 
electronic health records and claims data sources 
when using the same analysis and outcome definitions. 
Variability in rates derived from randomised trials or 
spontaneous reporting data could be even greater. 
If observational databases are to be used to inform 
safety surveillance activities, within database analyses 
(such as self-controlled case designs or propensity 
score adjusted comparative cohort designs) may help 
reduce study bias for any given comparison. Showing 
consistent effects across databases may further 
strengthen confidence in results. If observational 
data are used to derive historical “expected” rates and 
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compared with observed rates of events from another 
source, then the uncertainty in the background rate 
must be appropriately integrated to avoid misleading 
conclusions.

Strengths of this study

The large number of participating databases, geogra-
phical coverage, and sizable study population enabled 
a comprehensive assessment of background incidence 
rates of AESIs across different healthcare systems and 
regions worldwide. This study is an example of the 
collaborative projects possible within the Observa- 
tional Health Data Sciences and Informatics network. 
This initiative stores records using a common data 
model38 and standard vocabularies and develops and 
uses state-of-the-art methods to draw and validate 
causal conclusions.39 It has generated impactful 
evidence in many areas, such as hypertension treat-
ment,40 41 and was able to pivot quickly to generate policy 
influencing evidence in covid-19 management.42  43 
In our study we took advantage of the Observational 
Medical Outcomes Partnership common data model, 
which enabled us to use the same study design and 
analytical code in all databases and to gather results 
from participating data partners rapidly and without 
transferring patient level data. All outcome definitions, 
clinical codes, and phenotype algorithms have been 
made open source and are available online for review 
and to maximise reproducibility and reuse. The large 
scale use of the Observational Medical Outcomes 
Partnership common data model and open source 
science strategy has enabled us to generate useful, 
timely evidence on upcoming covid-19 vaccine safety. 
We welcome new data partners to run the analyses 
on their datasets, contribute their results to our web 
application, and participate in further Observational 
Health Data Sciences and Informatics studies.

Limitations of this study

The primary limitation of this study is that all 
outcomes could have been subject to measurement 
error. As the outcome definitions were based on the 
presence of specific diagnostic codes and were not 
validated further, sensitivity or specificity could have 
been imperfect. Our analysis relied on data from 2017 
to 2019 using a target population of all people in each 
database with more than 365 days of observation 
indexed on 1 January, 365 days’ time at risk, and 
outcome specific clean windows to allow for recurrent 
events. The impact of these design decisions should be 
explored further.

Some limitations relate to the use of each database. 
As information on hospital admission was not available 
in the primary care datasets used (CPRD-GOLD in the 
UK, IQVIA in France, Germany, and Australia, and 
IPCI in the Netherlands), events that happened during 
inpatient visits were not included. The electronic 
health records data sources were subject to incomplete 
capture of medical events recorded in other healthcare 
institutions. The bias of incomplete information was 
partially mitigated by including only those patients 

who had at least one year of continuous observation. 
The five administrative claims data sources offered 
reliable data capture but lacked data elements such as 
laboratory test results. The US based claims database 
did not record death information well. Our within 
database background rate comparison should have 
minimised bias related to these database specific 
limitations, mitigating against such limitations.

Conclusion

Our study assessed the descriptive epidemiology 
of potential AESIs for covid-19 vaccines. Our study 
highlights the wide range of adverse effects being 
monitored, from very rare neurological disorders to 
more common thromboembolic conditions. We found 
large variations in the observed rates of AESIs by age 
group and sex, showing the need for stratification 
or standardisation before using background rates 
for safety surveillance. Considerable population 
level heterogeneity was also found in AESI rates 
between databases, implying that individual study 
estimates should be interpreted with caution and 
that the systematic error associated with database 
choice should be incorporated into any analysis. 
We recommend that the same database be used to 
estimate post-covid-19 vaccine and background 
rates for comparison in vaccine safety monitoring. 
The database specific estimates reported here are 
available in a bespoke interactive web application for 
regulators and other stakeholders (https://data.ohdsi.
org/Covid19VaccineAesiIncidenceCharacterization/). 
These background rates provide useful real world 
context to inform public health efforts aimed at ensuring 
patient safety while promoting the appropriate use of 
vaccines worldwide.
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