

NON-GLP FINAL REPORT AMENDMENT NO. 01

Test Facility Study No. 5002121

A Single Dose Intramuscular Injection Tissue Distribution Study of mRNA-1647 in Male Sprague-Dawley Rats

SPONSOR:

Moderna Therapeutics, Inc. 200 Technology Square, Third Floor Cambridge, MA 02139 USA

TEST FACILITY:

Charles River Laboratories Montreal ULC Sherbrooke Site (CR SHB) 1580 Ida-Metivier Sherbrooke, QC J1E 0B5 Canada

Page 1 of 280

SUMMARY OF CHANGES AND JUSTIFICATIONS

Note: When applicable, additions are indicated in bold underlined text and deletions are indicated in bold strikethrough text in the affected sections of the document.

Item or Section(s)	Justification
Final Amended Report 1	
2. SUMMARY	To correct the average value of terminal half-life for the muscle (i.e.
	injection site) based on the results of the toxicokinetic evaluation.
8.5. Toxicokinetic Evaluations	To correct the average value of terminal half-life for the muscle (i.e.
	injection site) based on the results of the toxicokinetic evaluation.
Toxicokinetic Report	To include a clarification page to correct the average value of terminal
	half-life for the muscle (i.e. injection site) based on the results of the
	toxicokinetic evaluation.

TABLE OF CONTENTS

SUMMARY OF CHANGES AND JUSTIFICATIONS	
LIST OF TABLES	
LIST OF APPENDICES	
1. RESPONSIBLE PERSONNEL	
1.1. Test Facility	
1.2. Individual Scientists (IS) at Test Facility	
1.3. IS at Sponsor Test Site	
2. SUMMARY	
3. INTRODUCTION	
4. MATERIALS AND METHODS	
4.1. Test Item and Vehicle	
4.1.1. Test Item	
4.2. Vehicle	
4.3. Test and Reference Item Characterization.	
4.4. Analysis of Test Item	
4.5. Reserve Samples	
4.6. Test Item and Vehicle Inventory and Disposition	
4.7. Dose Formulation and Analysis.	
4.7.1. Preparation of Vehicle	
4.7.2. Preparation of Test Item	
4.7.3. Sample Collection and Analysis.	
4.7.3.1. Analytical Method	
4.7.3.2. Concentration and HomogeneityAnalysis	
4.7.3.3. Stability Analysis	
4.8. Test System.	
4.8.1. Receipt	
4.8.2. Justification for Test System and Number of Animals	

4.8.3. Animal Identification	
4.8.4. Environmental Acclimation	
4.8.5. Selection, Assignment, Replacement, and Disposition	on of Animals
4.8.6. Husbandry	
4.8.6.1. Housing	
4.8.6.2. Environmental Conditions	
4.8.6.3. Food	
4.8.6.4. Water	
4.8.6.5. Animal Enrichment	
4.8.6.6. Veterinary Care	
4.9. Experimental Design	
4.9.1. Administration of Test Materials	
4.9.2. Justification of Route and Dose Levels	
4.10. In-life Procedures, Observations, and Measurements	
4.10.1. Mortality/Moribundity Checks	
4.10.2. Clinical Observations	
4.10.2.1. Cage Side Observations	
4.10.2.2. Detailed Clinical Observations	
4.10.3. Body Weights	
4.11. Laboratory Evaluations	
4.12. Bioanalysis and Toxicokinetic Evaluation	
4.12.1. Bioanalytical Blood Sample Collection	
4.12.2. Bioanalytical Tissue Sample Collection	
4.12.3. Toxicokinetic Evaluation	
4.13. Terminal Procedures	
4.13.1. Unscheduled Deaths	
4.13.2. Scheduled Euthanasia.	
4.13.3. Necropsy	
4.13.4. Sample Tissue Weights	

5. STATISTICAL ANALYSIS	19
6. COMPUTERIZED SYSTEMS	19
7. RETENTION OF RECORDS, SAMPLES, AND SPECIMENS	20
8. RESULTS	21
8.1. Dose Formulation Analyses	21
8.2. Mortality	21
8.3. Clinical Observations.	21
8.4. Body Weights	21
8.5. Toxicokinetic Evaluations	21
8.6. Gross Pathology	22
9. CONCLUSION	24
10 REPORT APPROVAL	25

LIST OF TABLES

Table 1 Summary of Clinical Observations	26
Table 2 Incidence of Necropsy Findings by Organ/Group	27

LIST OF APPENDICES

Appendix 1 Study Plan, Amendments, and Deviations	29
Appendix 2 Test and Reference Item Characterization	95
Appendix 3 Dose Formulation Analysis Report	97
Appendix 4 Individual Animal Mortality	119
Appendix 5 Individual Clinical Observations	121
Appendix 6 Individual Body Weights	123
Appendix 7 Bioanalysis Report	126
Appendix 8 Toxicokinetic Evaluation Report	188
Appendix 9 Individual Gross Pathological Findings	244

1. RESPONSIBLE PERSONNEL

1.1. Test Facility

Study Director (b) (6)

Test Facility Management (b) (6)

1.2. Individual Scientists (IS) at Test Facility

Analytical Chemistry (b) (6)

Charles River Laboratories Montreal ULC

Senneville Site (CR MTL)

Senneville, QC

Bioanalysis

(mRNA Quantitation) (b) (6)

Charles River Laboratories Montreal ULC

Sherbrooke Site (CR SHB)

Sherbrooke, QC

Pathology

(Necropsy Only) (b) (6)

Charles River Laboratories Montreal ULC

Sherbrooke Site (CR SHB)

Sherbrooke, QC

1.3. IS at Sponsor Test Site

Toxicokinetic Interpretation

(b) (6)

Moderna Therapeutics

Cambridge MA 02138, USA

2. SUMMARY

The objective of this study was to determine the tissue distribution of mRNA-1647, when given once by intramuscular injection to rats. In addition, the toxicokinetic characteristics of mRNA-1647 were determined.

This study was not within the scope of regulations governing the conduct of nonclinical laboratory studies and is not intended to comply with such regulations.

The study design was as follows:

Text Table 1 Experimental Design

Ī						No. of Animals
				Dose Volume	Dose Concentration	Main Study
	Group No.	Test Item	Dose Level (μg)	(µL)	(mg/mL)	Males
ſ	1	mRNA-1647	100	200	0.5	35

The following parameters and end points were evaluated in this study: clinical signs, body weights, toxicokinetic evaluation (mRNA-1647 quantitation in plasma and tissues) and gross necropsy findings.

Mean plasma concentrations of mRNA-1647 were quantifiable up to 24 hours following a single intramuscular injection at a dose level of 100 μ g. All six mRNA-1647 constructs, gB, gH, gL, UL130, UL131A, and UL128 levels measured in plasma and tissues demonstrated nearly identical pharmacokinetic behavior. The highest mRNA-1647 exposure was observed in muscle (i.e. site of injection), followed by proximal (popliteal) lymph nodes, axillary distal lymph nodes and spleen, suggesting the mRNA-1647 distribution to the circulation by lymph flow. All other tissues tested, except for kidney and eye, have demonstrated exposures comparable or below that measured in plasma. Exposure observed for the eye was only slightly higher than that in plasma while no mRNA-1647 constructs were detected at any time point in the kidney. Concentrations of mRNA-1647 were quantifiable in the majority of tissues examined and in plasma at the first time point collected (i.e. 2 hours postdose) and peak concentrations were reached between 2 and 24 hours postdose in tissues with exposures above that of plasma. The $t_{1/2}$ of mRNA-1647 was reliably estimated in muscle (i.e. site of injection), proximal popliteal and axillary distal lymph nodes and spleen with average values for all construct $t_{1/2}$ of 14.9 8.39, 34.8, 31.1, and 63.0 hours, respectively.

There were no mortalities during the course of the study and no mRNA-1647-related changes in body weight.

mRNA-1647-related clinical signs consisted of slight to severe swelling noted at the injection site (i.e. right hindlimb) from Day 2 to 4 with a decreasing severity on Day 4. This clinical sign was no longer observed on Days 5 and 6 which suggests that animals had fully recovered.

mRNA-1647-related macroscopic findings were limited to observations noted at the intramuscular injection site (i.e. right thigh) and draining lymph nodes. From Day 1 through Day 4, macroscopic findings of swelling, firmness and/or dark foci were observed at the injection site and enlargement and/or dark foci were noted at the lymph nodes draining the injection site (i.e. right popliteal and inguinal). These changes were consistent with a local reaction to the intramuscular injection of mRNA-1647 and/or were secondary to the changes

seen at the injection site. Apparent recovery of these findings was seen on Day 4 with only 1 male (No. 1034) with dark foci noted on the right inguinal lymph on Day 6.

In conclusion, the administration of 100 µg mRNA-1647 by a single intramuscular injection to male rats was clinically well-tolerated. Clinical signs were limited to firm swelling noted at the injection site and correlated with macroscopic anatomical changes observed at the injection site (swelling, firmness and/or dark foci) with secondary changes in the draining lymph nodes (enlargement and/or dark foci). These changes were consistent with a local reaction to the intramuscular injection of mRNA-1647 and were fully or partially resolved at the end of the study. Concentrations of mRNA-1647 were quantifiable in the majority of tissues examined and in plasma 2 hours postdose and peak concentrations were reached between 2 and 24 hours postdose in tissues with exposures above that of plasma. The highest mRNA-1647 exposure was observed in muscle (i.e. site of injection), followed by proximal (popliteal) lymph nodes, axillary distal lymph nodes and spleen, suggesting the mRNA-1647 distribution to the circulation by lymph flow. All other tissues tested, except for spleen (higher than plasma) and eye (slightly higher than plasma), have demonstrated exposures comparable or below that measured in plasma.

3. INTRODUCTION

The objective of this study was to determine the tissue distribution of mRNA-1647, when given once by intramuscular injection to rats. In addition, the toxicokinetic characteristics of mRNA-1647 were determined.

The design of this study was based on the study objective and the overall product development strategy for the Test Item.

The Study Director signed the study plan on 28 Jun 2017, and dosing was initiated on 10 Jul 2017. The study plan, the last amended study plan, and deviations are presented in Appendix 1.

4. MATERIALS AND METHODS

4.1. Test Item and Vehicle

4.1.1. Test Item

Identification: mRNA-1647

Supplier: Moderna Therapeutics, Inc.

Batch (Lot) No.: MTDP17048 Concentration: 1.9 mg/mL

Retest Date: 20 Apr 2018

Physical Description: White to off-white lipid nanoparticle dispersion

Storage Conditions: Kept in a freezer set to maintain -20°C

4.2. Vehicle

Identification: Phosphate-buffered Saline (PBS) pH 7.2

Supplier: Gibco
Batch (Lot) No.: 1854892
Expiration Date: Dec 2018
Physical Description: Liquid

Storage Conditions: Kept in a controlled temperature area set to maintain 21°C

4.3. Test and Reference Item Characterization

The Sponsor provided to the Test Facility documentation of the identity, strength, purity and composition for the Test Item. A Summary of Analysis was provided to the Test Facility and is presented in Appendix 2.

4.4. Analysis of Test Item

The stability of the bulk Test Item was not determined during the course of this study.

4.5. Reserve Samples

Reserve samples were not collected during this study.

4.6. Test Item and Vehicle Inventory and Disposition

Records of the receipt, distribution, storage, and disposition of Test Item and Vehicle were maintained. All unused Sponsor-supplied bulk Test Item was returned to Moderna Therapeutics, Cambridge MA 02138, USA, on dry ice (after completion of dosing).

4.7. Dose Formulation and Analysis

4.7.1. Preparation of Vehicle

Dose formulation preparations were performed under a laminar flow hood using clean procedures.

The Vehicle, Phosphate Buffered Saline pH 7.2, was dispensed on day of dosing as required to dilute the bulk Test Item for administration to Group 1 animals.

Any residual volumes were discarded unless otherwise requested by the Study Director.

4.7.2. Preparation of Test Item

Dose formulation preparations were performed under a laminar flow hood using clean procedures.

Test Item dosing formulations were diluted with Phosphate Buffered Saline, pH 7.2, as necessary for administration. The dosing formulations were prepared on the day of dosing and were stored in a refrigerator set to maintain 4°C. The dose formulations were allowed to warm to room temperature for at least 30 minutes prior to dosing.

Any residual volumes of formulated Test Item were stored in a refrigerator set at 4°C and were discarded prior to report finalization.

4.7.3. Sample Collection and Analysis

Dose formulation samples were collected for analysis as indicated in Text Table 2.

Text Table 2
Dose Formulation Sample Collection Schedule

Interval Homogeneity		Concentration	Sampling From	
Day 1	Group 1 ^a	Group 1	Dosing container	

The homogeneity results obtained from the top, middle, and bottom preparations were averaged and utilized as the concentration results.

Samples to be analyzed were submitted on 11 Jul 2017 (on ice pack) to the Test Facility analytical laboratory.

Any residual/retained analytical samples (and Test Item used in analysis) were discarded before issue of the Final Report.

4.7.3.1. Analytical Method

Analyses described below were performed by IEX-HPLC using a validated analytical procedure (CR MTL Study No. 1802050).

4.7.3.2. Concentration and HomogeneityAnalysis

Duplicate sets of samples (0.5 mL) were sent to the analytical laboratory; Triplicate sets of samples (0.5 mL) were retained at the Test Facility as backup samples. Concentration results were considered acceptable when mean sample concentration results were within or equal to \pm 15% of theoretical concentration. The result of each individual sample concentration was considered acceptable within or equal to \pm 20%. Homogeneity results were considered acceptable when the relative standard deviation of the mean value at each sampling location was \leq 15%. After acceptance of the analytical results, backup samples were discarded.

4.7.3.3. Stability Analysis

There was no stability analysis performed for concentration used on this study.

4.8. Test System

4.8.1. Receipt

On 28 Jun 2017, 38 Crl:CD(SD) Spargue-Dawley male rats were received from Charles River Canada Inc., St. Constant, QC, Canada. At dosing inititation, the animals were 8 weeks old and weighed between 302 and 346 grams.

4.8.2. Justification for Test System and Number of Animals

The Sprague Dawley rat was chosen as the animal model for this study as it is an accepted rodent species for preclinical toxicity testing by regulatory agencies.

The total number of animals to be used in this study was considered to be the minimum required to properly characterize the effects of the Test Item. This study has been designed such that it does not require an unnecessary number of animals to accomplish its objectives.

At this time, studies in laboratory animals provide the best available basis for extrapolation to humans and are required to support regulatory submissions. Acceptable models which do not use live animals currently do not exist.

4.8.3. Animal Identification

Each animal were identified using a subcutaneously implanted electronic identification chip.

4.8.4. Environmental Acclimation

A minimum acclimation period of 12 days was allowed between animal receipt and the start of dosing in order to accustom the animals to the laboratory environment.

At arrival, animals had their number randomly assigned.

The disposition of all animals was documented in the study records.

4.8.6. Husbandry

4.8.6.1. Housing

Animals were group housed (up to 3 animals) in polycarbonate cages containing appropriate bedding equipped with an automatic watering valve. These housing conditions were maintained throughout the study. The room in which the animals were kept was documented in the study records.

Animals were separated during designated procedures/activities. Each cage was clearly labeled with a color-coded cage card indicating study, group, animal number(s), and sex.

4.8.6.2. Environmental Conditions

Target temperatures of 19°C to 25°C with a relative target humidity of 30% to 70% were maintained. A 12-hour light/12-hour dark cycle was maintained, except when interrupted for designated procedures. Ten or greater air changes per hour with 100% fresh air (no air recirculation) were maintained in the animal rooms.

4.8.6.3. Food

PMI Nutrition International Certified Rodent Chow No. 5CR4 (14% protein) was provided ad libitum throughout the study, except during designated procedures.

The feed was analyzed by the supplier for nutritional components and environmental contaminants. Results of the analysis are provided by the supplier and are on file at the Test Facility.

It is considered that there were no known contaminants in the feed that would interfere with the objectives of the study.

4.8.6.4. Water

Municipal tap water after treatment by reverse osmosis and ultraviolet irradiation was freely available to each animal via an automatic watering system (except during designated procedures).

Periodic analysis of the water is performed, and results of these analyses are on file at the Test Facility.

It is considered that there were no known contaminants in the water that could interfere with the outcome of the study.

4.8.6.5. Animal Enrichment

Animals were socially housed for psychological/environmental enrichment and were provided with items such as a hiding device and a chewing object, except when interrupted by study procedures/activities.

4.8.6.6. Veterinary Care

Veterinary care was available throughout the course of the study. No veterinary treatments were provided during the study.

4.9. Experimental Design

Text Table 3
Experimental Design

					Animal Nos.
Group		Dose Level		Dose Concentration	Main Study
No.	Test Item	(µg)	Dose Volume (μL)	(mg/mL)	Males
1	mRNA-1647	100	200	0.5	1001-1035

All rats remaining unassigned to groups after Day 1 were released from the study and their disposition was documented.

4.9.1. Administration of Test Materials

The Test Item was administered to the appropriate animals via intramuscular injection into the lateral compartment of the thigh once on Day 1. The volume for each dose was administered using a syringe/needle. The day of dosing was designated as Day 1.

The injection area was marked as frequently as required to allow appropriate visualization of administration sites. Hair have been clipped or shaved when required to improve visualization of the injection sites. The injection site was documented in the raw data.

On one occasion during the study, a spillage was noted for Animal No. 1034. Since this was single occurrence, this event was considered to have no impact on the study outcome.

4.9.2. Justification of Route and Dose Levels

The intramuscular route of exposure was selected because this is the intended route of human exposure.

The dose levels selected in this study were based upon pharmacologically active dose levels determined in rodent studies administered via this route. These dose levels were expected to produce sufficient tissue concentrations for quantitation in this tissue distribution study.

4.10. In-life Procedures, Observations, and Measurements

The in-life procedures, observations, and measurements listed below were performed for main study animals.

4.10.1. Mortality/Moribundity Checks

Throughout the study, animals were observed for general health/mortality and moribundity twice daily, once in the morning and once in the afternoon. Animals were not removed from cage during observation.

4.10.2. Clinical Observations

4.10.2.1. Cage Side Observations

Cage side observations were performed once daily throughout the study, beginning on Day -1. On the day of dosing, these observations were performed 4 to 6 hours postdose and approximately the same time each day thereafter. Animals were not removed from cage during observation.

4.10.2.2. Detailed Clinical Observations

The animals were removed from the cage, and a detailed clinical observation was performed weekly, beginning during Week -1.

4.10.3. Body Weights

Animals were weighed individually weekly, beginning during Week -1. A fasted weight was recorded on the day of necropsy.

4.11. Laboratory Evaluations

4.12. Bioanalysis and Toxicokinetic Evaluation

Blood and tissue samples were collected (± 15 minutes) according to Text Table 4.

Text Table 4
TK Sample Collection Schedule

Group		No. of	Sample Collection Time Points (Time Postdose ^b) on Day 1						
No.	Subgroup	Males	0ª hr	2 hrs	8 hrs	24 hrs	48 hrs	72 hrs	120 hrs
	A	5	X	-	-	-	-	1	-
	В	5	ı	X	-	-	-	1	-
	C	5	ı	-	X	-	-	1	-
1	D	5	ı	-	-	X	-	1	-
	Е	5	-	-	-	-	X	-	-
	F	5	-	-	-	_	-	X	-
	G	5	-	-	-	-	-	-	X

x = Sample collected; -= Not applicable.

4.12.1. Bioanalytical Blood Sample Collection

Blood was collected from jugular venipuncture at termination.

Target Blood Volume: 1.0 mL Anticoagulant: K₂EDTA

Processing: To plasma; blood samples were kept on wet ice prior to processing.

The samples were centrifuged within 30 minutes in a refrigerated centrifuge (set to maintain 4°C) for 15 minutes at 3000 x g. Immediately after plasma collection, plasma was aliquoted into

^a Sample collected before dosing.

b TK time point started at the perfusion.

2 x 100 μL aliquot and a leftover (when available). Aliquots were

snap frozen in liquid nitrogen and put on dry ice.

Storage Conditions: Samples were stored in a freezer set to maintain -80°C until

analysis.

Disposition: Plasma samples were used for mRNA quantitation by the

Immunology department using a bDNA method. The procedure followed during the course of this study along with the assay for acceptance criteria were detailed in the appropriate analytical

procedure. Samples were analyzed in duplicate.

Any residual/retained bioanalytical samples were discarded before issue of the Final Report.

4.12.2. Bioanalytical Tissue Sample Collection

Lung (left lobe), liver (left lateral), heart (ventricle bilateral), right kidney, axillary distal lymph nodes (bilateral pooled to a target mass of 1.5 mg per animal; 1 aliquot or 2, when possible), proximal popliteal and inguinal lymph nodes (bilateral pooled to a target mass of 1.5 mg per animal; 1 aliquot or 2, when possible), spleen, brain (left hemisphere), stomach (glandular region), testes (right testicle), eye (left), bone marrow femur (bilateral pooled in the same aliquot), jejunum (middle region), and injection site muscle (homogenized and split in 3 aliquots) were collected following isoflurane anesthesia for terminal collection. Samples collected from all study animals at the scheduled necropsy were analyzed.

Target Weight: 2 x 50 mg or maximum obtainable when less than 2 x 50 mg; except for

the bone marrow (1 aliquot) and the injection site (3 aliquots).

Processing: Animal were flushed with Sodium chloride with Heparin and sodium

nitrite solution to remove blood as much as possible in the tissues and then with PBS 1X. Tissues were then collected, rinsed with 1X PBS (except bone marrow), dried on paper towel (except bone marrow), weighed, and immediately snap frozen on liquid nitrogen (target of 1 minute after collection), and kept on dry ice. Feces from bowel tissues were removed

before processing.

Storage Conditions: Samples were stored in a freezer set to maintain -80°C until analysis.

Disposition: Samples collected from all study animals at the scheduled necropsy were

analyzed. Samples (2 x 50 mg) were used for mRNA quantitation by the Immunology department using a bDNA method. The procedures followed during the course of this study along with the assay for acceptance criteria were detailed in the appropriate analytical procedures. Samples were

analyzed in duplicate.

Any residual/retained bioanalytical samples were discarded before issue of the Final Report.

4.12.3. Toxicokinetic Evaluation

Toxicokinetic (TK) parameters were estimated using Phoenix pharmacokinetic software. A non-compartmental approach consistent with the intramuscular route of administration was used

for parameter estimation. All parameters were generated from mRNA-1647 concentrations in plasma and tissues from all TK occasions, whenever practical.

Text Table 5 Parameters Estimated

Parameter	Description of Parameter
Tmax	The time after dosing at which the maximum observed concentration was observed.
Cmax	The maximum observed concentration measured after dosing.
AUC(0-t)	The area under the concentration versus time curve from the start of dose administration to the time after dosing at which the last quantifiable concentration was observed, using the linear or linear/log trapezoidal method.
T1/2	The apparent terminal elimination half life.

When data permits, the slope of the terminal elimination phase of each arithmetic mean concentration versus time curve was determined by log-linear regression.

Descriptive statistics (number, mean, median, standard deviation, standard error, etc.) were reported as deemed appropriate and when possible, as well as ratios for appropriate grouping and sorting variables were generated using Phoenix. TK table and graphs were also generated by Phoenix

4.13. Terminal Procedures

Terminal procedures are summarized in Text Table 6.

Text Table 6 Terminal Procedures

	No. of Animals			Necropsy Procedure	s
Group No.	Males	Scheduled Euthanasia Day	Necropsy	Tissue Collection	Sample Tissue Weights
=:	15	1			
	5	2			
1	5	3	X	X^{a}	X
	5	4			
	5	6			

X = Procedure conducted; -= Not applicable.

4.13.1. Unscheduled Deaths

No animals died during the course of the study.

4.13.2. Scheduled Euthanasia

Main study animals surviving until scheduled euthanasia had a terminal body weight recorded, blood samples for laboratory evaluations were collected, and underwent isoflurane anesthesia

^a Consisting of blood, lung (left lobe), liver (left lateral), heart (ventricle bilateral), right kidney, axillary distal lymph nodes (bilateral pooled to a target mass of 1.5 mg per animal; 1 aliquot or 2, when possible), proximal popliteal and inguinal lymph nodes (bilateral pooled to a target mass of 1.5 mg per animal; 1 aliquot or 2, when possible), spleen, brain (left hemisphere), stomach (glandular region), testes (right testicle), eye (left), bone marrow femur (bilateral pooled in the same aliquot), jejunum (middle region), and injection site muscle (homogenized and split in 3 aliquots).

followed by whole-body perfusion with NaCl 0.9%, Heparin (1000 IU/L), 1% sodium nitrite and then PBS 1X. Animals were fasted overnight before their scheduled necropsy.

4.13.3. Necropsy

Main study and recovery animals were subjected to a complete necropsy examination, which included evaluation of the carcass and musculoskeletal system; all external surfaces and orifices; cranial cavity and external surfaces of the brain; and thoracic, abdominal, and pelvic cavities with their associated organs and tissues.

Necropsy procedures were performed by qualified personnel with appropriate training and experience in animal anatomy and gross pathology. A veterinary pathologist, or other suitably qualified person, was available.

4.13.4. Sample Tissue Weights

Lung (left lobe), liver (left lateral), heart (ventricle bilateral), right kidney, axillary distal lymph nodes (bilateral pooled to a target mass of 1.5 mg per animal), proximal popliteal and inguinal lymph nodes (bilateral pooled to a target mass of 1.5 mg per animal), spleen, brain (left hemisphere), stomach (glandular region), testes (right testicle), eye (left), bone marrow femur (bilateral pooled in the same aliquot), jejunum (middle region), and injection site muscle (homogenized and split in 3 aliquots) were weighed at necropsy for all scheduled euthanasia animals

5. STATISTICAL ANALYSIS

Means and standard deviations were calculated for all numerical data.

6. COMPUTERIZED SYSTEMS

Critical computerized systems used in the study are listed below or presented in the appropriate Phase Report. All computerized systems used in the conduct of this study have been validated; when a particular system has not satisfied all requirements, appropriate administrative and procedural controls were implemented to assure the quality and integrity of data.

Text Table 7 Critical Computerized Systems

System Name	Version No.	Description of Data Collected and/or Analyzed
Provantis	8	In-life; postmortem
Dispense	8	Test Material receipt, accountability
SRS (CR MTL in-house application built with	1.4	Statistical analyses of numerical in-life and
SAS and SAS system for Windows)	1.4	terminal data
In-house reporting software Nevis 2012	Nevis 2	Statistical analyses of numerical in-life and
(using SAS)		
		Data acquisition for dose formulation analysis,
Empower 3 (Waters Corporation)	Build 3471	including regression analysis and measurement of
Empower 5 (waters corporation)	SR1	concentration and recovery of dose formulations
		using HPLC
		Continuous Monitoring System. Monitoring of
Mesa Laboratories AmegaView CMS	v3.0 Build	standalone fridges, freezers, incubators, and selected
iviesa Eaboratories / timega view emis	1208.8	laboratories to measure temperature, relative
		humidity, and CO2, as appropriate
		Building Automation System. Control of HVAC and
Johnson Controls Metasys	MVE 7.0	other building systems, as well as
Johnson Controls Wetasys	IVI V L 7.0	temperature/humidity control and trending in selected
		laboratories and animal rooms
		Computation of non-compartmental analysis,
Phoenix	7.0	descriptive statistics and ratios, as well as graphical
		and tabular output
Watson Laboratory Information Management	7.4.2 SP1	mRNA quantitation data regression
system (Thermo Scientific)	7.4.2 31 1	mixiva quantitation data regression
Bio-Plex Manager	4.1 and 6.1	Data acquisition for mRNA quantitation

7. RETENTION OF RECORDS, SAMPLES, AND SPECIMENS

All study-specific raw data, documentation, study plan, samples, specimens, and final reports from this study were archived a CR MTL archives by no later than the date of final report issue. At least one year after issue of the draft report, the Sponsor will be contacted.

Electronic data generated by the Test Facility were archived as noted above, except that the data collected using Provantis 8 and reporting files stored on SDMS, which were archived at the Charles River Laboratories facility location in Wilmington, MA.

All records, and reports generated from phases or segments performed by Sponsor-designated subcontractors were kept at the Test Site for archiving.

8. RESULTS

8.1. Dose Formulation Analyses

(Appendix 3)

All study samples analyzed had mean concentrations within or equal to the acceptance criteria of \pm 15% (individual values within or equal to \pm 20%) of their theoretical concentrations.

For homogeneity, the relative standard deviation (RSD) of concentrations for all samples in each group tested was within the acceptance criteria of $\leq 5\%$.

8.2. Mortality

(Appendix 4)

There were no mortalities during the course of the study.

8.3. Clinical Observations

(Table 1 and Appendix 5)

For some animals, on the day of scheduled necropsy, slight to severe firm swelling was noted at the injection site (i.e. right hindlimb). On Day 2, moderate to severe swelling was noted while, from Day 3 through Day 4, the severity of the swelling tended to decrease from moderate to slight. This clinical sign was no longer observed on Days 5 and 6 which suggests that animals had fully recovered. There were no other mRNA-1647-related clinical signs noted.

8.4. Body Weights

(Appendix 6)

There were no mRNA-1647-related body weight changes during the study.

8.5. Toxicokinetic Evaluations

(Appendix 7 and Appendix 8)

No quantifiable mRNA-1647 concentrations were observed in the predose plasma and tissue samples (i.e. all results were below the limit of quantitation [BLQ]) for all constructs except gH, where 2 plasma samples were slightly above the lower limit of quantitation (LLOQ).

Mean plasma concentrations of mRNA-1647 were quantifiable up to 24 hours with inter-animal variability between 21.8 and 79.8 CV%. The only quantifiable plasma samples beyond 24 hours were 6 gH samples which were just above the LLOQ.

The gradient of mRNA-1647 constructs concentrations in evaluated tissues suggests that Test Item distributes from the site of administration proceeding through the lymphatic system. mRNA-1647 was retained at the site of administration and upon entry into circulation was primarily deposited in spleen. The amounts of mRNA-1647 detected in some peripheral tissues, although detectable, overall were negligible.

Concentrations of mRNA-1647 constructs were quantifiable by the first time point collected (i.e. 2 hours postdose) in highly exposed tissues (injection site muscle, lymph nodes, spleen). Other peripheral tissues have demonstrated varying concentrations of individual constructs

generally at low levels, except for kidneys where no mRNA-1647 constructs were detected at any time point. In muscle (i.e.site of injection), lymph nodes and spleen, mRNA-1647 concentrations were quantifiable up to the last sampling collection time, 120 hours postdose. In general, high concentration variability was observed for all tissues examined.

mRNA-1647 was detected in all of the analyzed tissues except for kidney. For the bone marrow, brain, jejunum, heart, liver, lung, stomach and testes, $AUC_{(0-t)}$ was calculated using less than 3 quantifiable mean concentrations and therefore, is an estimate. For highly exposed tissues, peak concentration (C_{max}) was observed between 2 hours and 8 hours postdose in muscle and lymph nodes and between 2 and 24 hours postdose in spleen. For all six mRNA-1647 constructs, measured levels for gB, gH, gL, UL130, UL131A, and UL128 in plasma and tissues were detectable in 1:1:1:1:1:1 ratio.

The half-life ($t_{1/2}$) of mRNA-1647 was reliably estimated in muscle (i.e. site of injection), proximal popliteal and axillary distal lymph nodes and spleen with average values for all construct $t_{1/2}$ of **14.9 8.39**, 34.8, 31.1, and 63.0 hours, respectively.

Peak mRNA-1647 plasma concentration was reached at the first sampling time point (i.e. 2 hours postdose). Peak concentration was followed by a rapid elimination phase. A rough estimation of $t_{1/2}$ for mRNA-1647 from initial data points of PK profile, including the C_{max} yielded values between 2.7 and 3.8 hours. The C_{max} and $AUC_{(0-t)}$ associated with a mRNA-1647 intramuscular administration of 100 μ g in male Crl:CD(SD) Sprague-Dawley rats were between 1.60 and 2.30 ng/mL and between 22.7 and 25.5 hr*ng/mL, respectively.

The highest mRNA-1647 exposure was observed in muscle (i.e. site of injection), followed by proximal (popliteal) and axillary distal lymph nodes, suggesting the Test Item distribution to the circulation by lymph flow. All other tissues tested, except for spleen and eye, had exposures comparable to or below the measured plasma concentration (tissue to plasma AUC ratios below 1.0). Exposure observed for the eye was only slightly higher than that in plasma. Concentrations were no longer detectable after 24 hours.

The averaged for all constructs, mRNA-1647 tissue-to-plasma $AUC_{(0-t)}$ ratios for highly exposed tissues were 939, 201, 62.8, and 13.4 for muscle (i.e. injection site), the lymph nodes (proximal popliteal and axillary distal) and spleen, respectively.

8.6. Gross Pathology

(Table 2 and Appendix 9)

mRNA-1647-related gross pathology findings were noted at the intramuscular injection site (i.e. right thigh) and draining lymph nodes, and are summarized in Text Table 8.

•		•				
Males						
Group Dose (µg/dose) No. Animals Examined	1 (day 1) 100 15	1 (day 2) 100 5	1 (day 3) 100 5	1 (day 4) 100 5	1 (day 6) 100 5	1 (total) 100 35
Injection site		3		3		
(No. Examined)	(15)	(5)	(5)	(5)	(5)	(35)
Swelling	4	5	3	0	0	12
Firm	0	5	5	0	0	10
Focus; dark	0	0	4	1	0	5
Material accumulation; clot	0	0	1	0	0	1
Draining lymph nodes ^a (No. Examined)	(15)	(5)	(5)	(5)	(5)	(35)
Enlargement	1	2	2	0	0	5
Focus; dark	0	0	1	0	1	2

Text Table 8
Summary of Gross Pathology Findings - Scheduled Euthanasia (Day 1, 2, 3, 4, and 6)

At the intramuscular injection site (i.e. right thigh), macroscopic findings of swelling, firmness and/or dark foci were observed in several animals euthanized from Day 1 through Day 4, with an apparent recovery of the findings starting on Day 4. In addition, material accumulation (i.e. clot) was observed at the injection site of one male (No. 1023) on Day 3. These changes were consistent with a local reaction to the intramuscular injection of mRNA-1647.

At the lymph nodes draining the injection site (i.e. right popliteal and inguinal), macroscopic changes of enlargement and/or dark foci were occasionally noted mainly in animals euthanized from Day 1 through Day 3, and were considered secondary to the changes seen at the injection site. Similarly, an apparent recovery of the findings was seen on Day 4 and 6 with only one male (No. 1034) with dark foci noted on the right inguinal lymph node on Day 6.

Other gross findings observed were considered incidental, and/or of the nature commonly observed in this strain and age of rats, and, therefore, were considered not mRNA-1647-related.

^a Popliteal right and inguinal right only.

9. CONCLUSION

In conclusion, the administration of 100 µg mRNA-1647 by a single intramuscular injection to male rats was clinically well-tolerated. Clinical signs were limited to firm swelling noted at the injection site and correlated with macroscopic anatomical changes observed at the injection site (swelling, firmness and/or dark foci) with secondary changes in the draining lymph nodes (enlargement and/or dark foci). These changes were consistent with a local reaction to the intramuscular injection of mRNA-1647 and were fully or partially resolved at the end of the study. Concentrations of mRNA-1647 were quantifiable in the majority of tissues examined and in plasma 2 hours postdose and peak concentrations were reached between 2 and 24 hours postdose in tissues with exposures above that of plasma. The highest mRNA-1647 exposure was observed in muscle (i.e. site of injection), followed by proximal (popliteal) lymph nodes, axillary distal lymph nodes and spleen, suggesting the mRNA-1647 distribution to the circulation by lymph flow. All other tissues tested, except for spleen (higher than plasma) and eye (slightly higher than plasma) have demonstrated exposures comparable or below that measured in plasma.

10. REPORT APPROVAL

(D) (D)	Date: 13 Dec 2017
(.5)	
Study Director	

Table 1	Summary of Clinical Observations			
	5002121			
	Day numbers relative to Star	t Date		
Sex: Male		100		
		ug 		
	Swollen Firm			
	Number of Observations	15		
	Number of Animals	15		
	Days from - to	2 4		
	Skin, Scab			
	Number of Observations	4		
	Number of Animals	3		
	Days from - to	-1 3		

Table 2Incidence of Necropsy Findings by Organ/Group5002121

Removal Reason: TERMINAL EUTHANASIA	Male	
	100	
	ug	
	Group 1	
Number of Animals:	35	
KIDNEY		
Adhesion	1	
LYMPH NODE, AXILLARY		
Focus; dark	7	
LYMPH NODE, INGUINAL		
Enlargement	1	
Focus; dark	1	
LYMPH NODE, MANDIBULAR		
Focus; dark	5	
Enlargement	1	
LYMPH NODE, POPLITEAL		
Enlargement	5	
Focus; dark	1	
SITE, INJECTION		
Swelling	12	
Abnormal consistency; firm	10	
Focus; dark	5	
Material accumulation; clot	1	
STOMACH		
Focus; dark	2	
THYMUS		
Focus; dark	23	

Table 2

Incidence of Necropsy Findings by Organ/Group 5002121

Key Page

Measurement/Statistics

<u>Measurement</u> <u>Descriptive</u> <u>Comparative</u> <u>Arithmetic/Adjusted</u> <u>Transformation</u>

Pathology Observation Count Positives

Group Information

<u>Short Name</u> <u>Long Name</u> <u>Report Headings</u>

1 1 100 ug Group 1

Removal Reason Grouping

<u>Grouping Name</u> <u>Abbreviation</u> <u>Removal Reasons</u>

TERMINAL EUTHANASIA TERM TERMINAL EUTHANASIA

FINAL STUDY PLAN

Test Facility Study No. 5002121

A Single Dose Intramuscular Injection Tissue Distribution Study of mRNA-1647 in Male Sprague-Dawley Rats

SPONSOR:

Moderna Therapeutics, Inc. 200 Technology Square, Third Floor Cambridge, MA 02139, USA

TEST FACILITY:

Charles River Laboratories Montreal ULC Sherbrooke Site (CR SHB) 1580 Ida-Metivier Sherbrooke, QC J1E 0B5 Canada

Page 1 of 21

TABLE OF CONTENTS

1.	OBJECTIVES	3
2.	PROPOSED STUDY SCHEDULE	3
3.	GUIDELINES FOR STUDY DESIGN	3
4.	REGULATORY COMPLIANCE	3
5.	SPONSOR	4
6.	RESPONSIBLE PERSONNEL	4
7.	TEST ITEM AND VEHICLE	5
8.	SAFETY	6
9.	DOSE FORMULATION AND ANALYSIS	7
10.	TEST SYSTEM	8
11.	HUSBANDRY	9
12.	EXPERIMENTAL DESIGN	11
13.	IN-LIFE PROCEDURES, OBSERVATIONS, AND MEASUREMENTS	11
14.	LABORATORY EVALUATIONS	13
15.	TERMINAL PROCEDURES	15
16.	STATISTICAL ANALYSIS	17
17.	COMPUTERIZED SYSTEMS	17
18.	AMENDMENTS AND DEVIATIONS	18
19.	RETENTION OF RECORDS, SAMPLES, AND SPECIMENS	18
20.	REPORTING	18
21.	ANIMAL WELFARE	19
TES	ST FACILITY APPROVAL	20
SPO	ONSOR APPROVAL	21

1. OBJECTIVES

The objective of this study is to determine the tissue distribution of mRNA-1647, when given once by intramuscular injection to rats. In addition, the toxicokinetic characteristics of mRNA-1647 will be determined.

1.1. Study Classification

Study Category: PK

Study Type: Distribution; Single Dose PK

Study Design: Parallel

Primary Treatment CAS Registry Number: Not Available Primary Treatment Unique Ingredient ID: Not Available

Class of Compound: mRNA

2. PROPOSED STUDY SCHEDULE

Proposed study dates are listed below. Actual applicable dates will be included in the Final Report.

Animal Arrival: 28 Jun 2017 Initiation of Dosing: 10 Jul 2017 Completion of In-life: 15 Jul 2017

(Last date of necropsy)

Draft Report: 25 Oct 2017

(69 working days following completion of in-life)

Final Report: 25 Apr 2018

(Expected date of Study Director signature, default

6 months from Draft Report)

3. GUIDELINES FOR STUDY DESIGN

The design of this study was based on the study objective(s) and the overall product development strategy for the Test Item.

4. REGULATORY COMPLIANCE

This study is not within the scope of regulations governing the conduct of nonclinical laboratory studies and is not intended to comply with such regulations.

5. SPONSOR

Sponsor Representative

(b) (6)

Address as cited for Sponsor

Tel: (b) (6)

E-mail:

(b) (6)

6. RESPONSIBLE PERSONNEL

Study Director

(b) (6)

Charles River Laboratories Montreal ULC

Sherbrooke Site (CR SHB)

Address as cited for Test Facility

Tel:

Fax: (b) (6)

E-mail:

(b) (6)

Management Contact

(b) (6)

Address as cited for Test Facility

Tel:

(b) (6)

Fax:

(b) (6)

E-mail:

(b) (6)

Individual Scientists (IS) at the Test Facility

Pathology Will be added by amendment

Analytical Chemistry

(b) (6)

Senior Research Scientist II

Charles River Laboratories Montreal ULC

Senneville Site (CR MTL) 22022 Transcanadienne Senneville, QC H9X 3R3

Canada

Tel:

(b) (6)

E-mail:

(b) (6)

Bioanalysis

(mRNA quantitation)

(b) (6)

Senior Research Scientist I

Charles River Laboratories Montreal ULC

Sherbrooke Site (CR SHB)

Address as cited for Test Facility

Tel: (b) (6) E-mail: (b) (6)

Each IS is required to report any deviations or other circumstances that could affect the quality or integrity of the study to the Study Director in a timely manner. Each IS will provide a report addressing their assigned phase of the study, which will be included as an appendix to the Final Report. The phase report will include the following:

• A listing of critical computerized systems used in the conduct and/or interpretation of the assigned study phase

IS at Sponsor Test Site

Toxicokinetic

Analysis/Interpretation

(b) (6)

Moderna Therapeutics 200 Technology Sq, 3rd Floor Cambridge MA 02138, USA

Email: (b) (6)

- Each PI is required to report any deviations or other circumstances that could affect the quality or integrity of the study to the Study Director in a timely manner. Each PI will provide a report addressing their assigned phase of the study, which will be included as an appendix to the Final Report. The phase report will include the following:
- The archive site for all records, samples, specimens and reports generated from the phase or segment (alternatively, details regarding the retention of the materials may be provided to the Study Director for inclusion in the Final Report)
- A listing of critical computerized systems used in the conduct and/or interpretation of the assigned study phase

7. TEST ITEM AND VEHICLE

7.1. Test Item

Identification: mRNA-1647

Supplier: Moderna Therapeutics, Inc

Batch (Lot) Number: Will be added by amendment

Concentration: Will be added by amendment

Retest Date: Will be added by amendment

Physical Description: White to off-white lipid nanoparticle dispersion

Storage Conditions: Kept in a freezer set to maintain -20°C

7.2. Vehicle

Identification: Phosphate-buffered Saline (PBS) pH 7.2

Supplier: Will be included in the Final Report
Batch (Lot) Number: Will be included in the Final Report
Expiration Date: Will be included in the Final Report

Physical Description: Liquid

Storage Conditions: Kept in a controlled temperature area set to maintain 21°C

7.3. Test Item Characterization

The Sponsor will provide to the Test Facility documentation of the identity, strength, purity and composition for the Test Item. A Certificate of Analysis or equivalent documentation will be provided for inclusion in the Final Report. The Sponsor will also provide information concerning the regulatory standard that was followed for these evaluations.

The Sponsor has appropriate documentation on file concerning the method of synthesis, fabrication or derivation of the Test Item, and this information is available to the appropriate regulatory agencies should it be requested.

7.4. Analysis of Test Item

The stability of the bulk Test Item will not be determined during the course of this study.

7.5. Reserve Samples

Reserve samples will not be collected during this study.

7.6. Test Item and Vehicle Inventory and Disposition

Records of the receipt, distribution, storage, and disposition of Test Item and Vehicle will be maintained. All unused Sponsor-supplied bulk Test Item will be returned to the Sponsor on dry ice (after completion of dosing).

Shipping Contact

(b) (6)

Moderna Therapeutics

500 Technology Sq, 8th Floor

Cambridge MA 02138, USA E-mail: (b) (6)

8. SAFETY

The safety precautions for the Test Item and dose formulations will be documented in a Test Material Safety Data Sheet (TMSDS) based on the information provided by the Sponsor either by an MSDS or similar document.

9. DOSE FORMULATION AND ANALYSIS

9.1. Preparation of Vehicle

Dose formulation preparations will be performed under a laminar flow hood using clean procedures.

The Vehicle, Phosphate Buffered Saline pH 7.2, will be dispensed on day of dosing as required to dilute the bulk Test Item for administration to Group 1 animals.

Any residual volumes will be discarded unless otherwise requested by the Study Director.

9.2. Preparation of Test Item

Dose formulation preparations will be performed under a laminar flow hood using clean procedures.

Test Item dosing formulations will be diluted with Phosphate Buffered Saline, pH 7.2, as necessary for administration. The dosing formulations will be prepared on the day of dosing and will be stored in a refrigerator set to maintain 4°C. The dose formulations will be allowed to warm to room temperature for at least 30 minutes prior to dosing. Alternatively, the aliquots can be transferred directly to room temperature.

Any residual volumes of formulated Test Item will be stored in a refrigerator set at 4°C and discarded prior to report finalization.

9.3. Sample Collection and Analysis

Dose formulation samples will be collected for analysis as indicated in the following table. Additional samples may be collected and analyzed at the discretion of the Study Director.

Dose Formulation Sample Collection Schedule

Interval	Homogeneity	Concentration	Sampling From
Day 1	Group 1 ^a	Group 1	Dosing container

The homogeneity results obtained from the top, middle and bottom preparations will be averaged and utilized as the concentration results.

Samples to be analyzed will be submitted as soon as possible following collection.

All samples to be analyzed will be transferred (on ice pack) to the analytical laboratory.

Any residual/retained analytical samples (and Test Item used in analysis) will be discarded before issue of the Final Report.

9.3.1. Analytical Method

Analyses described below will be performed by IEX-HPLC using a validated analytical procedure (CR-MTL Study No. 1802050).

9.3.1.1. Concentration and Homogeneity Analysis

Samples for Analysis: Duplicate top, middle, and bottom samples; sent for analysis as

noted in Section 9.3.

Backup Samples: Triplicate top, middle, and bottom samples; maintained at the Test

Facility. Backup samples may be analyzed at the discretion of the

Study Director.

Sampling Containers: Appropriate sized glass containers.

Sample Volume: 0.5 mL for analysis and backup samples. Storage Conditions: Kept in a refrigerator set to maintain 4°C.

Acceptance Criteria: For concentration, the criteria for acceptability will be mean

sample concentration results within or equal to \pm 15% of

theoretical concentration. Each individual sample concentration result within or equal to $\pm 20\%$. For homogeneity, the criteria for

acceptability will be a relative standard deviation (RSD) of

concentrations of $\leq 15\%$.

9.3.1.2. Stability Analysis

There will be no stability analysis performed for concentration used on this study.

10. TEST SYSTEM

Species: Rat

Strain: Crl:CD(SD) Sprague-Dawley rat

Source: Charles River Canada Inc., St. Constant, QC,

Canada

Number of Males Ordered: 38

Target Age at Arrival: 4 to 8 weeks
Target Weight at Arrival: 126 to 150 g

The actual age, weight, and number of animals received will be listed in the Final Report.

10.1. Justification of Test System and Number of Animals

The Sprague Dawley rat was chosen as the animal model for this study as it is an accepted rodent species for preclinical toxicity testing by regulatory agencies.

Test Facility Study No. 5002121

The total number of animals to be used in this study is considered to be the minimum required to properly characterize the effects of the Test Item. This study has been designed such that it does not require an unnecessary number of animals to accomplish its objectives.

At this time, studies in laboratory animals provide the best available basis for extrapolation to humans and are required to support regulatory submissions. Acceptable models which do not use live animals currently do not exist.

10.2. Animal Identification

Each animal will be identified using a subcutaneously implanted electronic identification chip.

10.3. Environmental Acclimation

A minimum acclimation period of 10 days will be allowed between animal receipt and the start of dosing in order to accustom the animals to the laboratory environment.

10.4. Selection, Assignment, Replacement, and Disposition of Animals

At arrival, animals will have their number randomly assigned. Animals in poor health will not be assigned to groups.

Before the initiation of dosing, any assigned animals considered unsuitable for use in the study will be replaced by alternate animals obtained from the same shipment and maintained under the same environmental conditions.

After initiation of dosing, study animals may be replaced during the replacement period with alternate animals in the event of accidental injury, non-Test Item-related health issues, or similar circumstances

The alternate animals may be used as replacements on the study within 1 day.

The disposition of all animals will be documented in the study records.

11. HUSBANDRY

11.1. Housing

Animals will be group housed (up to 3 animals) in polycarbonate cages containing appropriate bedding equipped with an automatic watering valve. These housing conditions will be maintained unless deemed inappropriate by the Study Director and/or Clinical Veterinarian. The room in which the animals will be kept will be documented in the study records.

Animals will be separated during designated procedures/activities. Each cage will be clearly labeled with a color-coded cage card indicating study, group, animal number(s), and sex.

11.2. Environmental Conditions

The targeted conditions for animal room environment will be as follows:

Temperature: 19°C to 25°C Humidity: 30% to 70%

Light Cycle: 12 hours light and 12 hours dark (except during designated

procedures)

11.3. Food

PMI Nutrition International Certified Rodent Chow No. 5CR4 will be provided ad libitum throughout the study, except during designated procedures. The same diet in meal form may be provided to individual animals as warranted by clinical signs (e.g., broken/damaged incisors or other health changes).

The feed is analyzed by the supplier for nutritional components and environmental contaminants. Results of the analysis are provided by the supplier and are on file at the Test Facility.

It is considered that there are no known contaminants in the feed that would interfere with the objectives of the study.

11.4. Water

Municipal tap water after treatment by reverse osmosis and ultraviolet irradiation will be freely available to each animal via an automatic watering system (except during designated procedures). Water bottles can be provided, if required.

Periodic analysis of the water is performed, and results of these analyses are on file at the Test Facility.

It is considered that there are no known contaminants in the water that could interfere with the outcome of the study.

11.5. Animal Enrichment

Animals will be socially housed for psychological/environmental enrichment and will be provided with items such as a hiding tube and a chewing object, except during study procedures/activities.

11.6. Veterinary Care

Veterinary care will be available throughout the course of the study and animals will be examined by the veterinary staff as warranted by clinical signs or other changes. All veterinary examinations and recommended therapeutic treatments, if any, will be documented in the study records.

In the event that animals show signs of illness or distress, the responsible veterinarian may make initial recommendations about treatment of the animal(s) and/or alteration of study procedures, which must be approved by the Study Director or Scientific designate. All such actions will be properly documented in the study records and, when appropriate, by study plan amendment.

Group No.

Treatment of the animal(s) for minor injuries or ailments may be approved without prior consultation with the Sponsor representative when such treatment does not impact fulfillment of the study objectives. If the condition of the animal(s) warrants significant therapeutic intervention or alterations in study procedures, the Sponsor representative will be contacted, when possible, to discuss appropriate action. If the condition of the animal(s) is such that emergency measures must be taken, the Study Director and/or clinical veterinarian will attempt to consult with the Sponsor representative prior to responding to the medical crisis, but the Study Director and/or veterinarian has authority to act immediately at his/her discretion to alleviate suffering. The Sponsor representative will be fully informed of any such events.

12. EXPERIMENTAL DESIGN

	Daga Walama	Daga Camaantustian	No. of Animals
Dose Level (µg)	Dose Volume (μL)	Dose Concentration (mg/mL)	Main Study
			Males

0.5

35

Experimental Design

200

100

mRNA-1647 12.1. Administration of Test Item

Test Item

The Test Item will be administered to the appropriate animals via intramuscular injection into the lateral compartment of the thigh once on Day 1. The volume for each dose will be administered using a syringe/needle. The day of dosing will be designated as Day 1.

The injection area will be marked as frequently as required to allow appropriate visualization of administration sites. Hair may be clipped or shaved if required to improve visualization of the injection sites. The injection site will be documented in the raw data.

12.2. Justification of Route and Dose Levels

The intramuscular route of exposure was selected because this is the intended route of human exposure.

The dose levels selected in this study are based upon pharmacologically active dose levels determined in rodent studies administered via this route. These dose levels are expected to produce sufficient tissue concentrations for quantitation in this tissue distribution study.

13. IN-LIFE PROCEDURES, OBSERVATIONS, AND MEASUREMENTS

The in-life procedures, observations, and measurements listed below will be performed for all main study animals. During the study, additional evaluations to those described below and/or scheduled, and considered necessary by the Study Director and/or Veterinarian to assess health status will be conducted and duly documented. More frequent observations may be undertaken if considered appropriate.

13.1. Mortality/Moribundity Checks

Frequency: Twice daily, once in the morning and once in the afternoon,

throughout the study.

Procedure: Animals will be observed for general health/mortality and

moribundity. Animals will not be removed from cage during observation, unless necessary for identification or confirmation of

possible findings.

13.2. Clinical Observations

13.2.1. Cage Side Observations

Frequency: Once on Day -1 and once daily throughout the study; target time of

4 to 6 hours postdose on day of dosing and approximately the same

time each day thereafter.

Procedure: Animals will not be removed from the cage during observation,

unless necessary for identification or confirmation of possible

findings.

13.2.2. Detailed Clinical Observations

Frequency: Weekly

Procedure: Animals removed from the cage for examination.

13.3. Body Weights

Frequency: Weekly

Procedure: Animals will be individually weighed. A fasted weight will be

recorded on the day of necropsy. Terminal body weights will not be collected from animals found dead or euthanized moribund.

14. LABORATORY EVALUATIONS

14.1. Bioanalysis and Toxicokinetic Evaluation

Blood and tissue samples will be collected according to the following table (\pm 15 minutes).

Sample Collection Time Points Group No. of (Time Postdose^b) on Day 1 Subgroup Males No. 0^a hr 2 hrs 8 hrs 24 hrs 48 hrs 72 hrs 120 hrs 5 X Α ---5 X В _ C 5 X -D 5 X Е X 5 -----5 X X

TK Sample Collection Schedule

Any residual/retained bioanalytical samples will be maintained for a minimum of 6 months following issuance of the Draft Report after which samples will be discarded. Alternatively, residual/retained samples will be discarded prior to the 6 month period should the issuance of the Final Report occur prior to the end of the 6 month retention period. An earlier discard of these residual/retained samples may also be requested and authorized by the Study Director.

14.1.1. Bioanalytical Blood Sample Collection

Blood will be collected from jugular venipuncture at termination and, if possible, from animals that are preterminally euthanized.

Target Blood Volume: 1.0 mL Anticoagulant: K₂EDTA

Processing: To plasma; blood samples will be kept on wet ice prior to

processing. The samples will be centrifuged within 30 minutes in a refrigerated centrifuge (set to maintain 4°C) for 15 minutes at 3000 x g. Immediately after plasma collection, plasma will be aliquoted into 2 x 100 μ L aliquot and a leftover (if available). Aliquots will be snap frozen in liquid nitrogen and put on dry ice.

Storage conditions: Samples will be stored in a freezer set to maintain -80°C until

analysis.

Disposition: Plasma samples will be used for mRNA quantitation by the

Immunology department using a bDNA method. The procedure to

Test Facility Study No. 5002121

x =Sample to be collected; - =Not applicable.

^a Sample will be collected before dosing.

b TK time point starts at the perfusion.

be followed during the course of this study along with the assay for acceptance criteria will be detailed in the appropriate analytical procedure. Samples will be analyzed in duplicate.

Any residual/retained bioanalytical samples will be discarded before issue of the Final Report.

14.1.2. Bioanalytical Tissue Sample Collection

Lung, liver, heart, right kidney, axillary distal lymph nodes (pooled to a target mass of 1.5 mg per animal), proximal popliteal and inguinal lymph nodes (pooled to a target mass of 1.5 mg per animal), spleen, brain, stomach, testes (right testicle), eye (left), bone marrow (bilateral pooled in the same aliquot), jejunum, and injection site muscle (homogenized and split in 3 aliquots) will be collected following isoflurane anesthesia for terminal collection. Samples collected from all study animals at the scheduled necropsy will be analyzed. No samples will be collected from animals that are found dead or preterminally euthanized.

Target weight: 2 x 50 mg

Processing: Animal will be flushed with Sodium chloride with Heparin and sodium

nitrite solution to remove blood as much as possible in the tissues and then with PBS 1X. Tissues will be then collected, rinsed with 1X PBS, dried on paper towel, weighed, and immediately snap frozen on liquid nitrogen (target of 1 minute after collection), and kept on dry ice. Feces from

bowel tissues will be removed before processing.

Storage conditions: Samples will be stored in a freezer set to maintain -80°C until analysis.

Disposition: Samples collected from all study animals at the scheduled necropsy will

be analyzed. Samples (2 x 50 mg) will be used for mRNA quantitation by the Immunology department using a bDNA method. The procedures to be

followed during the course of this study along with the assay for acceptance criteria will be detailed in the appropriate analytical

procedures. Samples will be analyzed in duplicate.

Any residual/retained bioanalytical samples will be discarded before issue of the Final Report.

14.1.3. Toxicokinetic Evaluation

Toxicokinetic (TK) parameters will be estimated using Phoenix pharmacokinetic software. A non-compartmental approach consistent with the intramuscular route of administration will be used for parameter estimation. All parameters will be generated from mRNA-1647 concentrations in plasma and tissues from all TK occasions, whenever practical.

Parameters to be Estimated

Parameter	Description of Parameter	
Tmax	The time after dosing at which the maximum observed concentration was observed	
Cmax	The maximum observed concentration measured after dosing	
	The area under the concentration versus time curve from the start of dose administration to the time after dosing at which the last quantifiable concentration was observed, using the linear or linear/log trapezoidal method.	

When data permits, the slope of the terminal elimination phase of each arithmetic mean concentration versus time curve will be determined by log-linear regression, and the following additional parameters will also be estimated.

Additional Parameters to be Estimated

Parameter	Description of Parameter
T1/2	The apparent terminal elimination half life.

Descriptive statistics (number, mean, median, standard deviation, standard error, etc.) will be reported as deemed appropriate and when possible, as well as ratios for appropriate grouping and sorting variables will be generated using Phoenix. TK table and graphs will also be generated by Phoenix.

15. TERMINAL PROCEDURES

Terminal procedures are summarized in the following table:

Terminal Procedures for Main Study Animals

Cuana Na	No. of Animals	Scheduled		Necropsy Procedure	s
Group No.	Males	Euthanasia Day	Necropsy	Tissue Collection	Sample Tissue Weights
	15	1			
	5	2			
1	5	3	X	X^{a}	X
	5	4			
	5	6			
Unscheduled Deaths		X	Standard Diagnostic List	-	
Replaced animals (prestudy)		X	Standard Diagnostic List	-	
Replaced animals (after dosing start)		X	Standard Diagnostic List	-	

X =Procedure to be conducted; - =Not applicable.

^a Consisting of blood, lung, liver, heart, right kidney, axillary distal lymph nodes (pooled to a target mass of 1.5 mg per animal), proximal popliteal and inguinal lymph nodes (pooled to a target mass of 1.5 mg per animal), spleen, brain, stomach, testes (right testicle), eye (left), bone marrow (bilateral pooled in the same aliquot), jejunum, and injection site muscle (homogenized and split in 3 aliquots).

15.1. Unscheduled Deaths

If a main study animal dies on study, a complete necropsy examination will be conducted and limited tissue (standard diagnostic tissue list) will be retained. If necessary, the animal will be refrigerated to minimize autolysis.

Main study animals may be euthanized for humane reasons as per Test Facility SOPs. The samples for laboratory evaluations will be obtained if possible as specified in Section 14. These animals will undergo exsanguination by incision from the abdominal aorta following isoflurane anesthesia unless deemed inappropriate by the Study Director and/or the clinical veterinarian. These animals will undergo necropsy, and limited tissues (standard diagnostic tissue list) will be retained. If necessary, the animal will be refrigerated (set to maintain 4°C) to minimize autolysis.

Animals found dead or euthanized before the initiation of dosing will be subject to complete necropsy examination and limited tissue retention (standard diagnostic tissue list). Any animal replaced after the start of dosing will be subject to complete necropsy examination and limited tissue retention (standard diagnostic tissue list), and any data generated will not be included in the report unless deemed appropriate by the Study Director.

15.2. Scheduled Euthanasia

Main study animals surviving until scheduled euthanasia will have a terminal body weight recorded, blood samples for laboratory evaluations will be collected (as appropriate), and will undergo isoflurane anesthesia followed by whole-body perfusion with NaCl 0.9 %, Heparin (1000 IU/L), 1 % sodium nitrite and then PBS 1X. Animals will be fasted overnight before their scheduled necropsy.

15.3. Necropsy

Main study animals will be subjected to a complete necropsy examination, which will include evaluation of the carcass and musculoskeletal system; all external surfaces and orifices; cranial cavity and external surfaces of the brain; and thoracic, abdominal, and pelvic cavities with their associated organs and tissues.

Necropsy procedures will be performed by qualified personnel with appropriate training and experience in animal anatomy and gross pathology. A veterinary pathologist, or other suitably qualified person, will be available.

At the discretion of the necropsy supervising pathologist, images may be generated for illustration of or consultation on gross observations. Generation of such images will be documented and communicated to the Study Director. Images and associated documentation will be retained and archived.

15.4. Sample Tissue Weights

Lung, liver, heart, right kidney, axillary distal lymph nodes (pooled to a target mass of 1.5 mg per animal), proximal popliteal and inguinal lymph nodes (pooled to a target mass of 1.5 mg per animal), spleen, brain, stomach, testes (right testicle), eye (left), bone marrow (bilateral pooled in the same aliquot), jejunum, and injection site muscle (homogenized and split in 3 aliquots) will be weighed at necropsy for all scheduled euthanasia animals. Sample tissue weights will not be recorded for animals found dead or euthanized in poor condition or in extremis.

16. STATISTICAL ANALYSIS

Means and standard deviations will be calculated for all numerical data.

17. COMPUTERIZED SYSTEMS

The following critical computerized systems may be used in the study. The actual critical computerized systems used will be specified in the Final Report.

Data for parameters not required by study plan, which are automatically generated by analytical devices used will be retained on file but not reported. Statistical analysis results that are generated by the program but are not required by study plan and/or are not scientifically relevant will be retained on file but will not be included in the tabulations.

Critical Computerized Systems

System Name	Description of Data Collected and/or Analyzed
Provantis	In-life; postmortem
Dispense	Test Material receipt, accountability
Mesa Laboratories AmegaView CMS	Continuous Monitoring System. Monitoring of standalone fridges, freezers, incubators, and selected laboratories to measure temperature, relative humidity, and CO2, as appropriate
Johnson Controls Metasys	Building Automation System. Control of HVAC and other building systems, as well as temperature/humidity control and trending in selected laboratories and animal rooms
Empower 3 (Waters Corporation)	Data acquisition for dose formulation analysis, including regression analysis and measurement of concentration and recovery of dose formulations using HPLC
Phoenix	Computation of non-compartmental analysis, descriptive statistics and ratios, as well as graphical and tabular output
Analyst (AB Sciex)	Bioanalytical data collection
Watson Laboratory Information Management system (Thermo Scientific)	Regression analysis and descriptive statistics of bioanalytical data
Bio-Plex Manager	Data acquisition and regression for Luminex data
SOFTmax® PRO (Molecular Devices Corporation)	Bioanalytical data collection and/or regression analysis

18. AMENDMENTS AND DEVIATIONS

Changes to the approved study plan shall be made in the form of an amendment, which will be signed and dated by the Study Director. Every reasonable effort will be made to discuss any necessary study plan changes in advance with the Sponsor.

All study plan and SOP deviations will be documented in the study records. Deviations from the study plan and/or SOP related to the phase(s) of the study conducted at a Test Site shall be documented, acknowledged by the PI/IS, and reported to the Study Director for authorization/acknowledgement. The Study Director will notify the Sponsor of deviations that may result in a significant impact on the study as soon as possible.

19. RETENTION OF RECORDS, SAMPLES, AND SPECIMENS

All study-specific raw data, electronic data, documentation, study plan, retained samples and specimens, and interim (if applicable) and final reports will be archived by no later than the date of final report issue. All materials generated by Charles River from this study will be transferred to CR-MTL archive. One year after issue of the draft report, the Sponsor will be contacted to determine the disposition of materials associated with the study.

Records to be maintained will include, but will not be limited to, documentation and data for the following:

- Study Plan, study plan amendments, and deviations
- Study schedule
- Study-related correspondence
- Test system receipt, health, and husbandry
- Test Item and Vehicle receipt, identification, preparation, and analysis
- In-life measurements and observations
- Clinical pathology sample collection and evaluation
- Laboratory evaluations sample collection and evaluation
- Gross observations and related data
- Statistical analysis results

20. REPORTING

A comprehensive Draft Report will be prepared following completion of the study and will be finalized following consultation with the Sponsor. The report will include all information necessary to provide a complete and accurate description of the experimental methods and results and any circumstances that may have affected the quality or integrity of the study.

The Sponsor will receive an electronic version of the Draft and Final Report provided in Adobe Acrobat PDF format (hyperlinked and searchable at final) along with a Microsoft Word version of the text. The PDF document will be created from native electronic files to the extent possible, including text and tables generated by the Test Facility. Report components not available in native electronic files and/or original signature pages will be scanned and converted to PDF image files for incorporation. An original copy of the report with the Test Facility's handwritten signatures will be retained.

Reports should be finalized within 6 months of issue of the Draft Report. If the Sponsor has not provided comments to the report within 6 months of draft issue, the report will be finalized by the Test Facility unless other arrangements are made by the Sponsor.

21. ANIMAL WELFARE

21.1. Institutional Animal Care and Use Committee Approval

The study plan and any amendment(s) or procedures involving the care and use of animals in this study will be reviewed and approved by CR SHB Institutional Animal Care and Use Committee (IACUC). During the study, the care and use of animals will be conducted with guidance from the USA National Research Council and the Canadian Council on Animal Care (CCAC).

FDA-CBER-2021-4379-0001228

TEST FACILITY APPROVAL

The signature below indicates that Test Facility Management approves the Study Director identified in this study plan.

The signature below indicates that the Study Director approves the study plan.

SPONSOR APPROVAL

The Study Plan was approved by the Sponsor by email on 28 Jun 2017. The signature below confirms the approval of the Study Plan by the Sponsor Representative

(b) (6)	Date:	16Oct17			
()	, ,		,		

Sponsor Representative

STUDY PLAN AMENDMENT 1

Test Facility Study No. 5002121

A Single Dose Intramuscular Injection Tissue Distribution Study of mRNA-1647 in Male Sprague-Dawley Rats

SPONSOR:

Moderna Therapeutics, Inc. 200 Technology Square, Third Floor Cambridge, MA 02139, USA

TEST FACILITY:

Charles River Laboratories Montreal ULC Sherbrooke Site (CR SHB) 1580 Ida-Metivier Sherbrooke, QC J1E 0B5 Canada

Page 1 of 22

SUMMARY OF CHANGES AND JUSTIFICATIONS

Study Plan effective date: 28-Jun-2017

Note: When applicable, additions are indicated in bold underlined text and deletions are indicated in bold strikethrough text in the affected sections of the document.

Item or Section(s)	Justification
Amendment 1	
6. RESPONSIBLE PERSONNEL	To include the pathologist's contact information.
7.1. TEST ITEM AND VEHICLE	To complete the Test Item information (Botch/lot number, concentration
	and retest date).
14.1.2. Bioanalytical Tissue Sample	To clarify the samples of tissues that should be collected, the target weight
Collection	and the processing.
15. TERMINAL PROCEDURES	To clarify the samples of tissues that should be collected.
15.4. Sample Tissue Weights	To clarify the samples of tissues that should be weight.

FDA-CBER-2021-4379-0001232

TABLE OF CONTENTS

I.	OBJECTIVES	4
2.	PROPOSED STUDY SCHEDULE	4
3.	GUIDELINES FOR STUDY DESIGN	4
4.	REGULATORY COMPLIANCE	4
5.	SPONSOR	5
6.	RESPONSIBLE PERSONNEL	5
7.	TEST ITEM AND VEHICLE	6
8.	SAFETY	8
9.	DOSE FORMULATION AND ANALYSIS	8
10.	TEST SYSTEM	9
11.	HUSBANDRY	10
12.	EXPERIMENTAL DESIGN	12
13.	IN-LIFE PROCEDURES, OBSERVATIONS, AND MEASUREMENTS	12
14.	LABORATORY EVALUATIONS	14
15.	TERMINAL PROCEDURES	16
16.	STATISTICAL ANALYSIS	18
17.	COMPUTERIZED SYSTEMS	18
18.	AMENDMENTS AND DEVIATIONS	19
19.	RETENTION OF RECORDS, SAMPLES, AND SPECIMENS	19
20.	REPORTING	19
21.	ANIMAL WELFARE	20
TES	T FACILITY APPROVAL	21
SPO	NSOR APPROVAL	22

1. OBJECTIVES

The objective of this study is to determine the tissue distribution of mRNA-1647, when given once by intramuscular injection to rats. In addition, the toxicokinetic characteristics of mRNA-1647 will be determined.

1.1. Study Classification

Study Category: PK

Study Type: Distribution; Single Dose PK

Study Design: Parallel

Primary Treatment CAS Registry Number: Not Available Primary Treatment Unique Ingredient ID: Not Available

Class of Compound: mRNA

2. PROPOSED STUDY SCHEDULE

Proposed study dates are listed below. Actual applicable dates will be included in the Final Report.

Animal Arrival: 28 Jun 2017 Initiation of Dosing: 10 Jul 2017 Completion of In-life: 15 Jul 2017

(Last date of necropsy)

Draft Report: 25 Oct 2017

(69 working days following completion of in-life)

Final Report: 25 Apr 2018

(Expected date of Study Director signature, default

6 months from Draft Report)

3. GUIDELINES FOR STUDY DESIGN

The design of this study was based on the study objective(s) and the overall product development strategy for the Test Item.

4. REGULATORY COMPLIANCE

This study is not within the scope of regulations governing the conduct of nonclinical laboratory studies and is not intended to comply with such regulations.

5. **SPONSOR**

Sponsor Representative

(b) (6)

Address as cited for Sponsor

(b) (6)

E-mail:

(b) (6)

6. RESPONSIBLE PERSONNEL

Study Director

(b) (6)

Charles River Laboratories Montreal ULC

Sherbrooke Site (CR SHB)

Address as cited for Test Facility

Tel:

Fax: (b) (6)

E-mail:

(b) (6)

Management Contact

(b) (6)

Address as cited for Test Facility

(b) (6) (b) (6) Fax:

E-mail:

(b) (6)

Individual Scientists (IS) at the Test Facility

Pathology

(b) (6)

Senior Scientific Director

Charles River Laboratories Montreal ULC

Sherbrooke Site (CR SHB)

1580 Ida-Metivier

Sherbrooke, QC J1E 0B5

Tel:

(b) (6)

E-mail:

(b) (6)

Will be added by amendment

Analytical Chemistry

(b) (6)

Senior Research Scientist II

Charles River Laboratories Montreal ULC

Senneville Site (CR MTL) 22022 Transcanadienne Senneville, QC H9X 3R3

Canada

Tel: (b) (6) E-mail (b) (6)

Bioanalysis

(mRNA quantitation)

(b) (6)

Senior Research Scientist I

Charles River Laboratories Montreal ULC

Sherbrooke Site (CR SHB)

Address as cited for Test Facility

Tel:

(b) (6)

E-mail: (b) (6)

Each IS is required to report any deviations or other circumstances that could affect the quality or integrity of the study to the Study Director in a timely manner. Each IS will provide a report addressing their assigned phase of the study, which will be included as an appendix to the Final Report. The phase report will include the following:

• A listing of critical computerized systems used in the conduct and/or interpretation of the assigned study phase

IS at Sponsor Test Site

Toxicokinetic Analysis/Interpretation

(b) (6)

Moderna Therapeutics

200 Technology Sq, 3rd Floor Cambridge MA 02138, USA

Email:

(b) (6)

- Each PI is required to report any deviations or other circumstances that could affect the quality or integrity of the study to the Study Director in a timely manner. Each PI will provide a report addressing their assigned phase of the study, which will be included as an appendix to the Final Report. The phase report will include the following:
- The archive site for all records, samples, specimens and reports generated from the phase or segment (alternatively, details regarding the retention of the materials may be provided to the Study Director for inclusion in the Final Report)
- A listing of critical computerized systems used in the conduct and/or interpretation of the assigned study phase

7. TEST ITEM AND VEHICLE

7.1. Test Item

Identification: mRNA-1647

Supplier: Moderna Therapeutics, Inc

Study Plan Amendment 1

Test Facility Study No. 5002121

Batch (Lot) Number: MTDP17048Will be added by amendment

Concentration: 1.9 mg/mLWill be added by amendment

Petest Date: 20.4 pr 2018Will be added by amendment

Retest Date: 20 Apr 2018 Will be added by amendment

Physical Description: White to off-white lipid nanoparticle dispersion

Storage Conditions: Kept in a freezer set to maintain -20°C

7.2. Vehicle

Identification: Phosphate-buffered Saline (PBS) pH 7.2

Supplier: Will be included in the Final Report
Batch (Lot) Number: Will be included in the Final Report
Expiration Date: Will be included in the Final Report

Physical Description: Liquid

Storage Conditions: Kept in a controlled temperature area set to maintain 21°C

7.3. Test Item Characterization

The Sponsor will provide to the Test Facility documentation of the identity, strength, purity and composition for the Test Item. A Certificate of Analysis or equivalent documentation will be provided for inclusion in the Final Report. The Sponsor will also provide information concerning the regulatory standard that was followed for these evaluations.

The Sponsor has appropriate documentation on file concerning the method of synthesis, fabrication or derivation of the Test Item, and this information is available to the appropriate regulatory agencies should it be requested.

7.4. Analysis of Test Item

The stability of the bulk Test Item will not be determined during the course of this study.

7.5. Reserve Samples

Reserve samples will not be collected during this study.

7.6. Test Item and Vehicle Inventory and Disposition

Records of the receipt, distribution, storage, and disposition of Test Item and Vehicle will be maintained. All unused Sponsor-supplied bulk Test Item will be returned to the Sponsor on dry ice (after completion of dosing).

Shipping Contact

(b) (6)

Moderna Therapeutics

500 Technology Sq, 8th Floor Cambridge MA 02138, USA

E-mail: (b) (6)

8. SAFETY

The safety precautions for the Test Item and dose formulations will be documented in a Test Material Safety Data Sheet (TMSDS) based on the information provided by the Sponsor either by an MSDS or similar document.

9. DOSE FORMULATION AND ANALYSIS

9.1. Preparation of Vehicle

Dose formulation preparations will be performed under a laminar flow hood using clean procedures.

The Vehicle, Phosphate Buffered Saline pH 7.2, will be dispensed on day of dosing as required to dilute the bulk Test Item for administration to Group 1 animals.

Any residual volumes will be discarded unless otherwise requested by the Study Director.

9.2. Preparation of Test Item

Dose formulation preparations will be performed under a laminar flow hood using clean procedures.

Test Item dosing formulations will be diluted with Phosphate Buffered Saline, pH 7.2, as necessary for administration. The dosing formulations will be prepared on the day of dosing and will be stored in a refrigerator set to maintain 4°C. The dose formulations will be allowed to warm to room temperature for at least 30 minutes prior to dosing. Alternatively, the aliquots can be transferred directly to room temperature.

Any residual volumes of formulated Test Item will be stored in a refrigerator set at 4°C and discarded prior to report finalization.

9.3. Sample Collection and Analysis

Dose formulation samples will be collected for analysis as indicated in the following table. Additional samples may be collected and analyzed at the discretion of the Study Director.

Dose Formulation Sample Collection Schedule

Interval	Homogeneity	Concentration	Sampling From	
Day 1	Group 1 ^a	Group 1	Dosing container	

The homogeneity results obtained from the top, middle and bottom preparations will be averaged and utilized as the concentration results.

Samples to be analyzed will be submitted as soon as possible following collection.

All samples to be analyzed will be transferred (on ice pack) to the analytical laboratory.

Study Plan Amendment 1

Test Facility Study No. 5002121

Any residual/retained analytical samples (and Test Item used in analysis) will be discarded before issue of the Final Report.

9.3.1. Analytical Method

Analyses described below will be performed by IEX-HPLC using a validated analytical procedure (CR-MTL Study No. 1802050).

9.3.1.1. Concentration and Homogeneity Analysis

Samples for Analysis: Duplicate top, middle, and bottom samples; sent for analysis as

noted in Section 9.3.

Backup Samples: Triplicate top, middle, and bottom samples; maintained at the Test

Facility. Backup samples may be analyzed at the discretion of the

Study Director.

Sampling Containers: Appropriate sized glass containers.

Sample Volume: 0.5 mL for analysis and backup samples. Storage Conditions: Kept in a refrigerator set to maintain 4°C.

Acceptance Criteria: For concentration, the criteria for acceptability will be mean

sample concentration results within or equal to \pm 15% of

theoretical concentration. Each individual sample concentration result within or equal to $\pm 20\%$. For homogeneity, the criteria for

acceptability will be a relative standard deviation (RSD) of

concentrations of $\leq 15\%$.

9.3.1.2. Stability Analysis

There will be no stability analysis performed for concentration used on this study.

10. TEST SYSTEM

Species: Rat

Strain: Crl:CD(SD) Sprague-Dawley rat

Source: Charles River Canada Inc., St. Constant, QC,

Canada

Number of Males Ordered: 38

Target Age at Arrival: 4 to 8 weeks
Target Weight at Arrival: 126 to 150 g

The actual age, weight, and number of animals received will be listed in the Final Report.

10.1. Justification of Test System and Number of Animals

The Sprague Dawley rat was chosen as the animal model for this study as it is an accepted rodent species for preclinical toxicity testing by regulatory agencies.

The total number of animals to be used in this study is considered to be the minimum required to properly characterize the effects of the Test Item. This study has been designed such that it does not require an unnecessary number of animals to accomplish its objectives.

At this time, studies in laboratory animals provide the best available basis for extrapolation to humans and are required to support regulatory submissions. Acceptable models which do not use live animals currently do not exist.

10.2. Animal Identification

Each animal will be identified using a subcutaneously implanted electronic identification chip.

10.3. Environmental Acclimation

A minimum acclimation period of 10 days will be allowed between animal receipt and the start of dosing in order to accustom the animals to the laboratory environment.

10.4. Selection, Assignment, Replacement, and Disposition of Animals

At arrival, animals will have their number randomly assigned. Animals in poor health will not be assigned to groups.

Before the initiation of dosing, any assigned animals considered unsuitable for use in the study will be replaced by alternate animals obtained from the same shipment and maintained under the same environmental conditions.

After initiation of dosing, study animals may be replaced during the replacement period with alternate animals in the event of accidental injury, non-Test Item-related health issues, or similar circumstances.

The alternate animals may be used as replacements on the study within 1 day.

The disposition of all animals will be documented in the study records.

11. HUSBANDRY

11.1. Housing

Animals will be group housed (up to 3 animals) in polycarbonate cages containing appropriate bedding equipped with an automatic watering valve. These housing conditions will be maintained unless deemed inappropriate by the Study Director and/or Clinical Veterinarian. The room in which the animals will be kept will be documented in the study records.

Animals will be separated during designated procedures/activities. Each cage will be clearly labeled with a color-coded cage card indicating study, group, animal number(s), and sex.

Study Plan Amendment 1

Test Facility Study No. 5002121

11.2. Environmental Conditions

The targeted conditions for animal room environment will be as follows:

Temperature: 19°C to 25°C Humidity: 30% to 70%

Light Cycle: 12 hours light and 12 hours dark (except during designated

procedures)

11.3. Food

PMI Nutrition International Certified Rodent Chow No. 5CR4 will be provided ad libitum throughout the study, except during designated procedures. The same diet in meal form may be provided to individual animals as warranted by clinical signs (e.g., broken/damaged incisors or other health changes).

The feed is analyzed by the supplier for nutritional components and environmental contaminants. Results of the analysis are provided by the supplier and are on file at the Test Facility.

It is considered that there are no known contaminants in the feed that would interfere with the objectives of the study.

11.4. Water

Municipal tap water after treatment by reverse osmosis and ultraviolet irradiation will be freely available to each animal via an automatic watering system (except during designated procedures). Water bottles can be provided, if required.

Periodic analysis of the water is performed, and results of these analyses are on file at the Test Facility.

It is considered that there are no known contaminants in the water that could interfere with the outcome of the study.

11.5. Animal Enrichment

Animals will be socially housed for psychological/environmental enrichment and will be provided with items such as a hiding tube and a chewing object, except during study procedures/activities.

11.6. Veterinary Care

Veterinary care will be available throughout the course of the study and animals will be examined by the veterinary staff as warranted by clinical signs or other changes. All veterinary examinations and recommended therapeutic treatments, if any, will be documented in the study records.

In the event that animals show signs of illness or distress, the responsible veterinarian may make initial recommendations about treatment of the animal(s) and/or alteration of study procedures, which must be approved by the Study Director or Scientific designate. All such actions will be properly documented in the study records and, when appropriate, by study plan amendment. Treatment of the animal(s) for minor injuries or ailments may be approved without prior consultation with the Sponsor representative when such treatment does not impact fulfillment of the study objectives. If the condition of the animal(s) warrants significant therapeutic intervention or alterations in study procedures, the Sponsor representative will be contacted, when possible, to discuss appropriate action. If the condition of the animal(s) is such that emergency measures must be taken, the Study Director and/or clinical veterinarian will attempt to consult with the Sponsor representative prior to responding to the medical crisis, but the Study Director and/or veterinarian has authority to act immediately at his/her discretion to alleviate suffering. The Sponsor representative will be fully informed of any such events.

12. EXPERIMENTAL DESIGN

Experiment	al L	esign

			Dogo Volumo	Dose Concentration	No. of Animals
Group No.	Test Item	st Item Dose Level (µg) Dose Volume Do (µL)		(mg/mL)	Main Study
			(μL)	(mg/mL)	Males
1	mRNA-1647	100	200	0.5	35

12.1. Administration of Test Item

The Test Item will be administered to the appropriate animals via intramuscular injection into the lateral compartment of the thigh once on Day 1. The volume for each dose will be administered using a syringe/needle. The day of dosing will be designated as Day 1.

The injection area will be marked as frequently as required to allow appropriate visualization of administration sites. Hair may be clipped or shaved if required to improve visualization of the injection sites. The injection site will be documented in the raw data.

12.2. Justification of Route and Dose Levels

The intramuscular route of exposure was selected because this is the intended route of human exposure.

The dose levels selected in this study are based upon pharmacologically active dose levels determined in rodent studies administered via this route. These dose levels are expected to produce sufficient tissue concentrations for quantitation in this tissue distribution study.

13. IN-LIFE PROCEDURES, OBSERVATIONS, AND MEASUREMENTS

The in-life procedures, observations, and measurements listed below will be performed for all main study animals. During the study, additional evaluations to those described below and/or scheduled, and considered necessary by the Study Director and/or Veterinarian to assess health

status will be conducted and duly documented. More frequent observations may be undertaken if considered appropriate.

13.1. Mortality/Moribundity Checks

Frequency: Twice daily, once in the morning and once in the afternoon,

throughout the study.

Procedure: Animals will be observed for general health/mortality and

moribundity. Animals will not be removed from cage during observation, unless necessary for identification or confirmation of

possible findings.

13.2. Clinical Observations

13.2.1. Cage Side Observations

Frequency: Once on Day -1 and once daily throughout the study; target time of

4 to 6 hours postdose on day of dosing and approximately the same

time each day thereafter.

Procedure: Animals will not be removed from the cage during observation,

unless necessary for identification or confirmation of possible

findings.

13.2.2. Detailed Clinical Observations

Frequency: Weekly

Procedure: Animals removed from the cage for examination.

13.3. Body Weights

Frequency: Weekly

Procedure: Animals will be individually weighed. A fasted weight will be

recorded on the day of necropsy. Terminal body weights will not be collected from animals found dead or euthanized moribund.

FDA-CBER-2021-4379-0001243

14. LABORATORY EVALUATIONS

14.1. Bioanalysis and Toxicokinetic Evaluation

Blood and tissue samples will be collected according to the following table (\pm 15 minutes).

Sample Collection Time Points Group No. of (Time Postdose^b) on Day 1 Subgroup Males No. 0^a hr 2 hrs 8 hrs 24 hrs 48 hrs 72 hrs 120 hrs 5 X Α ---5 X В _ C 5 X -D 5 X Е X 5 -----5 X

TK Sample Collection Schedule

Any residual/retained bioanalytical samples will be maintained for a minimum of 6 months following issuance of the Draft Report after which samples will be discarded. Alternatively, residual/retained samples will be discarded prior to the 6 month period should the issuance of the Final Report occur prior to the end of the 6 month retention period. An earlier discard of these residual/retained samples may also be requested and authorized by the Study Director.

14.1.1. Bioanalytical Blood Sample Collection

Blood will be collected from jugular venipuncture at termination and, if possible, from animals that are preterminally euthanized.

Target Blood Volume: 1.0 mL Anticoagulant: K₂EDTA

Processing: To plasma; blood samples will be kept on wet ice prior to

processing. The samples will be centrifuged within 30 minutes in a refrigerated centrifuge (set to maintain 4°C) for 15 minutes at 3000 x g. Immediately after plasma collection, plasma will be aliquoted into 2 x 100 μ L aliquot and a leftover (if available). Aliquots will be snap frozen in liquid nitrogen and put on dry ice.

Storage conditions: Samples will be stored in a freezer set to maintain -80°C until

analysis.

Disposition: Plasma samples will be used for mRNA quantitation by the

Immunology department using a bDNA method. The procedure to

Study Plan Amendment 1

Test Facility Study No. 5002121

X

x =Sample to be collected; - =Not applicable.

^a Sample will be collected before dosing.

b TK time point starts at the perfusion.

be followed during the course of this study along with the assay for acceptance criteria will be detailed in the appropriate analytical procedure. Samples will be analyzed in duplicate.

Any residual/retained bioanalytical samples will be discarded before issue of the Final Report.

14.1.2. Bioanalytical Tissue Sample Collection

Lung (left lobe), liver (left lateral), heart (ventricle bilateral), right kidney, axillary distal lymph nodes (bilateral pooled to a target mass of 1.5 mg per animal; 1 aliquot or 2, if possible), proximal popliteal and inguinal lymph nodes (bilateral pooled to a target mass of 1.5 mg per animal; 1 aliquot or 2, if possible), spleen, brain (left hemisphere), stomach (glandular region), testes (right testicle), eye (left), bone marrow femur (bilateral pooled in the same aliquot), jejunum (middle region), and injection site muscle (homogenized and split in 3 aliquots) will be collected following isoflurane anesthesia for terminal collection. Samples collected from all study animals at the scheduled necropsy will be analyzed. No samples will be collected from animals that are found dead or preterminally euthanized.

Target weight: 2 x 50 mg or maximum obtainable if less than 2 x 50 mg; except for

the bone marrow (1 aliquot) and the injection site (3 aliquots).

Processing: Animal will be flushed with Sodium chloride with Heparin and sodium

nitrite solution to remove blood as much as possible in the tissues and then with PBS 1X. Tissues will be then collected, rinsed with 1X PBS (except bone marrow), dried on paper towel (except bone marrow), weighed, and immediately snap frozen on liquid nitrogen (target of 1 minute after collection), and kept on dry ice. Feces from bowel tissues will be

removed before processing.

Storage conditions: Samples will be stored in a freezer set to maintain -80°C until analysis.

Disposition: Samples collected from all study animals at the scheduled necropsy will

be analyzed. Samples (2 x 50 mg) will be used for mRNA quantitation by the Immunology department using a bDNA method. The procedures to be

followed during the course of this study along with the assay for acceptance criteria will be detailed in the appropriate analytical

procedures. Samples will be analyzed in duplicate.

Any residual/retained bioanalytical samples will be discarded before issue of the Final Report.

14.1.3. Toxicokinetic Evaluation

Toxicokinetic (TK) parameters will be estimated using Phoenix pharmacokinetic software. A non-compartmental approach consistent with the intramuscular route of administration will be used for parameter estimation. All parameters will be generated from mRNA-1647 concentrations in plasma and tissues from all TK occasions, whenever practical.

Parameters to be Estimated

Parameter	Description of Parameter	
Tmax	The time after dosing at which the maximum observed concentration was observed	
Cmax	The maximum observed concentration measured after dosing	
AUC(0-t)	The area under the concentration versus time curve from the start of dose administration to the time after dosing at which the last quantifiable concentration was observed, using the linear or linear/log trapezoidal method.	

When data permits, the slope of the terminal elimination phase of each arithmetic mean concentration versus time curve will be determined by log-linear regression, and the following additional parameters will also be estimated.

Additional Parameters to be Estimated

Parameter	Description of Parameter
T1/2	The apparent terminal elimination half life.

Descriptive statistics (number, mean, median, standard deviation, standard error, etc.) will be reported as deemed appropriate and when possible, as well as ratios for appropriate grouping and sorting variables will be generated using Phoenix. TK table and graphs will also be generated by Phoenix.

15. TERMINAL PROCEDURES

Terminal procedures are summarized in the following table:

Terminal Procedures for Main Study Animals

Group No.	No. of Animals	Scheduled Euthanasia Day	Necropsy Procedures		
	Males		Necropsy	Tissue Collection	Sample Tissue Weights
	15	1		X X ^a	
	5	2			
1	5	3	X		X
	5	4			
	5	6			
Unscheduled Deaths		X	Standard Diagnostic List	-	
Replaced animals (prestudy)		X	Standard Diagnostic List	-	
Replaced animals (after dosing start)		X	Standard Diagnostic List	-	

X =Procedure to be conducted; - =Not applicable.

^a Consisting of blood, lung (left lobe), liver (left lateral), heart (ventricle bilateral), right kidney, axillary distal lymph nodes (bilateral) pooled to a target mass of 1.5 mg per animal; 1 aliquot or 2, if possible), proximal popliteal and inguinal lymph nodes (bilateral pooled to a target mass of 1.5 mg per animal; 1 aliquot or 2, if possible), spleen, brain (left hemisphere), stomach (glandular region), testes (right testicle), eye (left), bone

Group No.	No. of Animals	Scheduled	Necropsy Procedures		
Group No.	Males	Euthanasia Day	Necropsy	Tissue Collection	Sample Tissue Weights

marrow <u>femur</u> (bilateral pooled in the same aliquot), jejunum <u>(middle region)</u>, and injection site muscle (homogenized and split in 3 aliquots).

15.1. Unscheduled Deaths

If a main study animal dies on study, a complete necropsy examination will be conducted and limited tissue (standard diagnostic tissue list) will be retained. If necessary, the animal will be refrigerated to minimize autolysis.

Main study animals may be euthanized for humane reasons as per Test Facility SOPs. The samples for laboratory evaluations will be obtained if possible as specified in Section 14. These animals will undergo exsanguination by incision from the abdominal aorta following isoflurane anesthesia unless deemed inappropriate by the Study Director and/or the clinical veterinarian. These animals will undergo necropsy, and limited tissues (standard diagnostic tissue list) will be retained. If necessary, the animal will be refrigerated (set to maintain 4°C) to minimize autolysis.

Animals found dead or euthanized before the initiation of dosing will be subject to complete necropsy examination and limited tissue retention (standard diagnostic tissue list). Any animal replaced after the start of dosing will be subject to complete necropsy examination and limited tissue retention (standard diagnostic tissue list), and any data generated will not be included in the report unless deemed appropriate by the Study Director.

15.2. Scheduled Euthanasia

Main study animals surviving until scheduled euthanasia will have a terminal body weight recorded, blood samples for laboratory evaluations will be collected (as appropriate), and will undergo isoflurane anesthesia followed by whole-body perfusion with NaCl 0.9 %, Heparin (1000 IU/L), 1 % sodium nitrite and then PBS 1X. Animals will be fasted overnight before their scheduled necropsy.

15.3. Necropsy

Main study animals will be subjected to a complete necropsy examination, which will include evaluation of the carcass and musculoskeletal system; all external surfaces and orifices; cranial cavity and external surfaces of the brain; and thoracic, abdominal, and pelvic cavities with their associated organs and tissues.

Necropsy procedures will be performed by qualified personnel with appropriate training and experience in animal anatomy and gross pathology. A veterinary pathologist, or other suitably qualified person, will be available.

At the discretion of the necropsy supervising pathologist, images may be generated for illustration of or consultation on gross observations. Generation of such images will be

documented and communicated to the Study Director. Images and associated documentation will be retained and archived.

15.4. Sample Tissue Weights

<u>Samples of Llung (left lobe)</u>, liver <u>(left lateral)</u>, heart <u>(ventricle bilateral)</u>, right kidney, axillary distal lymph nodes (<u>bilateral</u> pooled to a target mass of 1.5 mg per animal; <u>1 aliquot or 2</u>, <u>if possible</u>), proximal popliteal and inguinal lymph nodes (<u>bilateral</u> pooled to a target mass of 1.5 mg per animal; <u>1 aliquot or 2</u>, <u>if possible</u>), spleen, brain <u>(left hemisphere)</u>, stomach <u>(glandular region)</u>, testes (right testicle), eye (left), bone marrow <u>femur</u> (bilateral pooled in the same aliquot), jejunum <u>(middle region)</u>, and injection site muscle (homogenized and split in 3 aliquots) will be weighed at necropsy for all scheduled euthanasia animals. Sample tissue weights will not be recorded for animals found dead or euthanized in poor condition or in extremis.

16. STATISTICAL ANALYSIS

Means and standard deviations will be calculated for all numerical data.

17. COMPUTERIZED SYSTEMS

The following critical computerized systems may be used in the study. The actual critical computerized systems used will be specified in the Final Report.

Data for parameters not required by study plan, which are automatically generated by analytical devices used will be retained on file but not reported. Statistical analysis results that are generated by the program but are not required by study plan and/or are not scientifically relevant will be retained on file but will not be included in the tabulations.

Critical Comp	outerized Systems
---------------	-------------------

System Name	Description of Data Collected and/or Analyzed		
Provantis	In-life; postmortem		
Dispense	Test Material receipt, accountability		
	Continuous Monitoring System. Monitoring of standalone		
Mesa Laboratories AmegaView CMS	fridges, freezers, incubators, and selected laboratories to		
iviesa Eaboratories / tillega v iew Civis	measure temperature, relative humidity, and CO2, as		
	appropriate		
	Building Automation System. Control of HVAC and other		
Johnson Controls Metasys	building systems, as well as temperature/humidity control and		
•	trending in selected laboratories and animal rooms		
	Data acquisition for dose formulation analysis, including		
Empower 3 (Waters Corporation)	regression analysis and measurement of concentration and		
• • • • • • • • • • • • • • • • • • • •	recovery of dose formulations using HPLC		
Phoenix	Computation of non-compartmental analysis, descriptive		
Phoenix	statistics and ratios, as well as graphical and tabular output		
Analyst (AB Sciex)	Bioanalytical data collection		
Watson Laboratory Information Management	Regression analysis and descriptive statistics of bioanalytical		
system (Thermo Scientific)	data		

Bio-Plex Manager	Data acquisition and regression for Luminex data
SOFTmax [®] PRO	Bioanalytical data collection and/or regression analysis
(Molecular Devices Corporation)	Bioanarytical data confection and/or regression anarysis

18. AMENDMENTS AND DEVIATIONS

Changes to the approved study plan shall be made in the form of an amendment, which will be signed and dated by the Study Director. Every reasonable effort will be made to discuss any necessary study plan changes in advance with the Sponsor.

All study plan and SOP deviations will be documented in the study records. Deviations from the study plan and/or SOP related to the phase(s) of the study conducted at a Test Site shall be documented, acknowledged by the PI/IS, and reported to the Study Director for authorization/acknowledgement. The Study Director will notify the Sponsor of deviations that may result in a significant impact on the study as soon as possible.

19. RETENTION OF RECORDS, SAMPLES, AND SPECIMENS

All study-specific raw data, electronic data, documentation, study plan, retained samples and specimens, and interim (if applicable) and final reports will be archived by no later than the date of final report issue. All materials generated by Charles River from this study will be transferred to CR-MTL archive. One year after issue of the draft report, the Sponsor will be contacted to determine the disposition of materials associated with the study.

Records to be maintained will include, but will not be limited to, documentation and data for the following:

- Study Plan, study plan amendments, and deviations
- Study schedule
- Study-related correspondence
- Test system receipt, health, and husbandry
- Test Item and Vehicle receipt, identification, preparation, and analysis
- In-life measurements and observations
- Clinical pathology sample collection and evaluation
- Laboratory evaluations sample collection and evaluation
- Gross observations and related data
- Statistical analysis results

20. REPORTING

A comprehensive Draft Report will be prepared following completion of the study and will be finalized following consultation with the Sponsor. The report will include all information

necessary to provide a complete and accurate description of the experimental methods and results and any circumstances that may have affected the quality or integrity of the study.

The Sponsor will receive an electronic version of the Draft and Final Report provided in Adobe Acrobat PDF format (hyperlinked and searchable at final) along with a Microsoft Word version of the text. The PDF document will be created from native electronic files to the extent possible, including text and tables generated by the Test Facility. Report components not available in native electronic files and/or original signature pages will be scanned and converted to PDF image files for incorporation. An original copy of the report with the Test Facility's handwritten signatures will be retained.

Reports should be finalized within 6 months of issue of the Draft Report. If the Sponsor has not provided comments to the report within 6 months of draft issue, the report will be finalized by the Test Facility unless other arrangements are made by the Sponsor.

21. ANIMAL WELFARE

21.1. Institutional Animal Care and Use Committee Approval

The study plan and any amendment(s) or procedures involving the care and use of animals in this study will be reviewed and approved by CR SHB Institutional Animal Care and Use Committee (IACUC). During the study, the care and use of animals will be conducted with guidance from the USA National Research Council and the Canadian Council on Animal Care (CCAC).

AMENDMENT APPROVAL

(b) (6)
Study Director

Date: 07/JU12017

SPONSOR APPROVAL

The Study Plan Amendment was approved by the Sponsor by email on 06 Jul 2017.

STUDY PLAN AMENDMENT 2

Test Facility Study No. 5002121

A Single Dose Intramuscular Injection Tissue Distribution Study of mRNA-1647 in Male Sprague-Dawley Rats

SPONSOR:

Moderna Therapeutics, Inc. 200 Technology Square, Third Floor Cambridge, MA 02139, USA

TEST FACILITY:

Charles River Laboratories Montreal ULC Sherbrooke Site (CR SHB) 1580 Ida-Metivier Sherbrooke, QC J1E 0B5 Canada

Page 1 of 22

SUMMARY OF CHANGES AND JUSTIFICATIONS

Study Plan effective date: 28-Jun-2017

Note: When applicable, additions are indicated in bold underlined text and deletions are indicated in bold strikethrough text in the affected sections of the document.

Item or Section(s)	Justification
Amendment 1	Date: 07-Jul-2017
6. RESPONSIBLE PERSONNEL	To include the pathologist's contact information.
7.1. TEST ITEM AND VEHICLE	To complete the Test Item information (Botch/lot number, concentration
	and retest date).
14.1.2. Bioanalytical Tissue Sample	To clarify the samples of tissues that should be collected, the target weight
Collection	and the processing.
15. TERMINAL PROCEDURES	To clarify the samples of tissues that should be collected.
15.4. Sample Tissue Weights	To clarify the samples of tissues that should be weight.
Amendment 2	
6. RESPONSIBLE PERSONNEL	To clarify that no pathology report is required.

TABLE OF CONTENTS

SUN	MMARY OF CHANGES AND JUSTIFICATIONS	2
1.	OBJECTIVES	4
2.	PROPOSED STUDY SCHEDULE	4
3.	GUIDELINES FOR STUDY DESIGN	4
4.	REGULATORY COMPLIANCE	4
5.	SPONSOR	5
6.	RESPONSIBLE PERSONNEL	5
7.	TEST ITEM AND VEHICLE	6
8.	SAFETY	8
9.	DOSE FORMULATION AND ANALYSIS	8
10.	TEST SYSTEM	9
11.	HUSBANDRY	10
12.	EXPERIMENTAL DESIGN	12
13.	IN-LIFE PROCEDURES, OBSERVATIONS, AND MEASUREMENTS	12
14.	LABORATORY EVALUATIONS	14
15.	TERMINAL PROCEDURES	16
16.	STATISTICAL ANALYSIS	18
17.	COMPUTERIZED SYSTEMS	18
18.	AMENDMENTS AND DEVIATIONS	19
19.	RETENTION OF RECORDS, SAMPLES, AND SPECIMENS	19
20.	REPORTING	19
21.	ANIMAL WELFARE	20
AM	ENDMENT APPROVAL	21
SPC	ONSOR APPROVAL	22

1. OBJECTIVES

The objective of this study is to determine the tissue distribution of mRNA-1647, when given once by intramuscular injection to rats. In addition, the toxicokinetic characteristics of mRNA-1647 will be determined.

1.1. Study Classification

Study Category: PK

Study Type: Distribution; Single Dose PK

Study Design: Parallel

Primary Treatment CAS Registry Number: Not Available Primary Treatment Unique Ingredient ID: Not Available

Class of Compound: mRNA

2. PROPOSED STUDY SCHEDULE

Proposed study dates are listed below. Actual applicable dates will be included in the Final Report.

Animal Arrival: 28 Jun 2017 Initiation of Dosing: 10 Jul 2017 Completion of In-life: 15 Jul 2017

(Last date of necropsy)

Draft Report: 25 Oct 2017

(69 working days following completion of in-life)

Final Report: 25 Apr 2018

(Expected date of Study Director signature, default

6 months from Draft Report)

3. GUIDELINES FOR STUDY DESIGN

The design of this study was based on the study objective(s) and the overall product development strategy for the Test Item.

4. REGULATORY COMPLIANCE

This study is not within the scope of regulations governing the conduct of nonclinical laboratory studies and is not intended to comply with such regulations.

5. SPONSOR

Sponsor Representative

(b) (6)

Address as cited for Sponsor

Tel: (b) (6)

E-mail:

(b) (6)

6. RESPONSIBLE PERSONNEL

Study Director

(b) (6)

Charles River Laboratories Montreal ULC

Sherbrooke Site (CR SHB)

Address as cited for Test Facility

Tel: (b) (6) Fax: (b) (6)

Fax: (b) (6) E-mail: (b) (6)

Management Contact

(b) (6)

Address as cited for Test Facility

Tel: (b) (6)

Fax: (b) (6)

E-mail: (b) (6)

Individual Scientists (IS) at the Test Facility

Pathology

(Necropsy only) (b) (6)

Senior Scientific Director

Charles River Laboratories Montreal ULC

Sherbrooke Site (CR SHB)

1580 Ida-Metivier

Sherbrooke, QC J1E 0B5

Tel:

(b) (6)

E-mail:

(b)(6)

Analytical Chemistry

(b) (6)

Senior Research Scientist II

Charles River Laboratories Montreal ULC

Senneville Site (CR MTL) 22022 Transcanadienne Senneville, QC H9X 3R3

Canada

Tel: (b) (6) E-mail: (b) (6)

Bioanalysis

(mRNA quantitation)

(b) (6)

Senior Research Scientist I

Charles River Laboratories Montreal ULC

Sherbrooke Site (CR SHB)

Address as cited for Test Facility

Tel:

(b) (6)

E-mail: (b) (6)

Each IS is required to report any deviations or other circumstances that could affect the quality or integrity of the study to the Study Director in a timely manner. Each IS will provide a report addressing their assigned phase of the study, **with the exception of the pathologist**, which will be included as an appendix to the Final Report. The phase report will include the following:

• A listing of critical computerized systems used in the conduct and/or interpretation of the assigned study phase

IS at Sponsor Test Site

Toxicokinetic Analysis/Interpretation

(b) (6)

Moderna Therapeutics

200 Technology Sq, 3rd Floor Cambridge MA 02138, USA

Email:

(b) (6)

- Each PI is required to report any deviations or other circumstances that could affect the quality or integrity of the study to the Study Director in a timely manner. Each PI will provide a report addressing their assigned phase of the study, which will be included as an appendix to the Final Report. The phase report will include the following:
- The archive site for all records, samples, specimens and reports generated from the phase or segment (alternatively, details regarding the retention of the materials may be provided to the Study Director for inclusion in the Final Report)
- A listing of critical computerized systems used in the conduct and/or interpretation of the assigned study phase

7. TEST ITEM AND VEHICLE

7.1. Test Item

Identification: mRNA-1647

Supplier: Moderna Therapeutics, Inc

Study Plan Amendment 2

Test Facility Study No. 5002121

Batch (Lot) Number: MTDP17048 Concentration: 1.9 mg/mL

Retest Date: 20 Apr 2018

Physical Description: White to off-white lipid nanoparticle dispersion

Storage Conditions: Kept in a freezer set to maintain -20°C

7.2. Vehicle

Identification: Phosphate-buffered Saline (PBS) pH 7.2

Supplier: Will be included in the Final Report
Batch (Lot) Number: Will be included in the Final Report
Expiration Date: Will be included in the Final Report

Physical Description: Liquid

Storage Conditions: Kept in a controlled temperature area set to maintain 21°C

7.3. Test Item Characterization

The Sponsor will provide to the Test Facility documentation of the identity, strength, purity and composition for the Test Item. A Certificate of Analysis or equivalent documentation will be provided for inclusion in the Final Report. The Sponsor will also provide information concerning the regulatory standard that was followed for these evaluations.

The Sponsor has appropriate documentation on file concerning the method of synthesis, fabrication or derivation of the Test Item, and this information is available to the appropriate regulatory agencies should it be requested.

7.4. Analysis of Test Item

The stability of the bulk Test Item will not be determined during the course of this study.

7.5. Reserve Samples

Reserve samples will not be collected during this study.

7.6. Test Item and Vehicle Inventory and Disposition

Records of the receipt, distribution, storage, and disposition of Test Item and Vehicle will be maintained. All unused Sponsor-supplied bulk Test Item will be returned to the Sponsor on dry ice (after completion of dosing).

Shipping Contact

(b) (6)

Moderna Therapeutics

500 Technology Sq, 8th Floor Cambridge MA 02138, USA

E-mail: (b) (6)

8. SAFETY

The safety precautions for the Test Item and dose formulations will be documented in a Test Material Safety Data Sheet (TMSDS) based on the information provided by the Sponsor either by an MSDS or similar document.

9. DOSE FORMULATION AND ANALYSIS

9.1. Preparation of Vehicle

Dose formulation preparations will be performed under a laminar flow hood using clean procedures.

The Vehicle, Phosphate Buffered Saline pH 7.2, will be dispensed on day of dosing as required to dilute the bulk Test Item for administration to Group 1 animals.

Any residual volumes will be discarded unless otherwise requested by the Study Director.

9.2. Preparation of Test Item

Dose formulation preparations will be performed under a laminar flow hood using clean procedures.

Test Item dosing formulations will be diluted with Phosphate Buffered Saline, pH 7.2, as necessary for administration. The dosing formulations will be prepared on the day of dosing and will be stored in a refrigerator set to maintain 4°C. The dose formulations will be allowed to warm to room temperature for at least 30 minutes prior to dosing. Alternatively, the aliquots can be transferred directly to room temperature.

Any residual volumes of formulated Test Item will be stored in a refrigerator set at 4°C and discarded prior to report finalization.

9.3. Sample Collection and Analysis

Dose formulation samples will be collected for analysis as indicated in the following table. Additional samples may be collected and analyzed at the discretion of the Study Director.

Dose Formulation Sample Collection Schedule

Interval	Homogeneity	Concentration	Sampling From
Day 1	Group 1 ^a	Group 1	Dosing container

The homogeneity results obtained from the top, middle and bottom preparations will be averaged and utilized as the concentration results.

Samples to be analyzed will be submitted as soon as possible following collection.

All samples to be analyzed will be transferred (on ice pack) to the analytical laboratory.

Study Plan Amendment 2

Test Facility Study No. 5002121

Any residual/retained analytical samples (and Test Item used in analysis) will be discarded before issue of the Final Report.

9.3.1. Analytical Method

Analyses described below will be performed by IEX-HPLC using a validated analytical procedure (CR-MTL Study No. 1802050).

9.3.1.1. Concentration and Homogeneity Analysis

Samples for Analysis: Duplicate top, middle, and bottom samples; sent for analysis as

noted in Section 9.3.

Backup Samples: Triplicate top, middle, and bottom samples; maintained at the Test

Facility. Backup samples may be analyzed at the discretion of the

Study Director.

Sampling Containers: Appropriate sized glass containers.

Sample Volume: 0.5 mL for analysis and backup samples. Storage Conditions: Kept in a refrigerator set to maintain 4°C.

Acceptance Criteria: For concentration, the criteria for acceptability will be mean

sample concentration results within or equal to \pm 15% of

theoretical concentration. Each individual sample concentration result within or equal to \pm 20%. For homogeneity, the criteria for acceptability will be a relative standard deviation (RSD) of

concentrations of < 15%

9.3.1.2. Stability Analysis

There will be no stability analysis performed for concentration used on this study.

10. TEST SYSTEM

Species: Rat

Strain: Crl:CD(SD) Sprague-Dawley rat

Source: Charles River Canada Inc., St. Constant, QC,

Canada

Number of Males Ordered: 38

Target Age at Arrival: 4 to 8 weeks
Target Weight at Arrival: 126 to 150 g

The actual age, weight, and number of animals received will be listed in the Final Report.

10.1. Justification of Test System and Number of Animals

The Sprague Dawley rat was chosen as the animal model for this study as it is an accepted rodent species for preclinical toxicity testing by regulatory agencies.

The total number of animals to be used in this study is considered to be the minimum required to properly characterize the effects of the Test Item. This study has been designed such that it does not require an unnecessary number of animals to accomplish its objectives.

At this time, studies in laboratory animals provide the best available basis for extrapolation to humans and are required to support regulatory submissions. Acceptable models which do not use live animals currently do not exist.

10.2. Animal Identification

Each animal will be identified using a subcutaneously implanted electronic identification chip.

10.3. Environmental Acclimation

A minimum acclimation period of 10 days will be allowed between animal receipt and the start of dosing in order to accustom the animals to the laboratory environment.

10.4. Selection, Assignment, Replacement, and Disposition of Animals

At arrival, animals will have their number randomly assigned. Animals in poor health will not be assigned to groups.

Before the initiation of dosing, any assigned animals considered unsuitable for use in the study will be replaced by alternate animals obtained from the same shipment and maintained under the same environmental conditions.

After initiation of dosing, study animals may be replaced during the replacement period with alternate animals in the event of accidental injury, non-Test Item-related health issues, or similar circumstances.

The alternate animals may be used as replacements on the study within 1 day.

The disposition of all animals will be documented in the study records.

11. HUSBANDRY

11.1. Housing

Animals will be group housed (up to 3 animals) in polycarbonate cages containing appropriate bedding equipped with an automatic watering valve. These housing conditions will be maintained unless deemed inappropriate by the Study Director and/or Clinical Veterinarian. The room in which the animals will be kept will be documented in the study records.

Animals will be separated during designated procedures/activities. Each cage will be clearly labeled with a color-coded cage card indicating study, group, animal number(s), and sex.

Study Plan Amendment 2

Test Facility Study No. 5002121

11.2. Environmental Conditions

The targeted conditions for animal room environment will be as follows:

Temperature: 19°C to 25°C Humidity: 30% to 70%

Light Cycle: 12 hours light and 12 hours dark (except during designated

procedures)

11.3. Food

PMI Nutrition International Certified Rodent Chow No. 5CR4 will be provided ad libitum throughout the study, except during designated procedures. The same diet in meal form may be provided to individual animals as warranted by clinical signs (e.g., broken/damaged incisors or other health changes).

The feed is analyzed by the supplier for nutritional components and environmental contaminants. Results of the analysis are provided by the supplier and are on file at the Test Facility.

It is considered that there are no known contaminants in the feed that would interfere with the objectives of the study.

11.4. Water

Municipal tap water after treatment by reverse osmosis and ultraviolet irradiation will be freely available to each animal via an automatic watering system (except during designated procedures). Water bottles can be provided, if required.

Periodic analysis of the water is performed, and results of these analyses are on file at the Test Facility.

It is considered that there are no known contaminants in the water that could interfere with the outcome of the study.

11.5. Animal Enrichment

Animals will be socially housed for psychological/environmental enrichment and will be provided with items such as a hiding tube and a chewing object, except during study procedures/activities.

11.6. Veterinary Care

Veterinary care will be available throughout the course of the study and animals will be examined by the veterinary staff as warranted by clinical signs or other changes. All veterinary examinations and recommended therapeutic treatments, if any, will be documented in the study records.

In the event that animals show signs of illness or distress, the responsible veterinarian may make initial recommendations about treatment of the animal(s) and/or alteration of study procedures, which must be approved by the Study Director or Scientific designate. All such actions will be properly documented in the study records and, when appropriate, by study plan amendment. Treatment of the animal(s) for minor injuries or ailments may be approved without prior consultation with the Sponsor representative when such treatment does not impact fulfillment of the study objectives. If the condition of the animal(s) warrants significant therapeutic intervention or alterations in study procedures, the Sponsor representative will be contacted, when possible, to discuss appropriate action. If the condition of the animal(s) is such that emergency measures must be taken, the Study Director and/or clinical veterinarian will attempt to consult with the Sponsor representative prior to responding to the medical crisis, but the Study Director and/or veterinarian has authority to act immediately at his/her discretion to alleviate suffering. The Sponsor representative will be fully informed of any such events.

12. EXPERIMENTAL DESIGN

Ехре	erimentai Design	

			Dose Volume	Dose Concentration	No. of Animals
Group No.	Group No. Test Item Dose Le				Main Study
			(μL)	(mg/mL)	Males
1	mRNA-1647	100	200	0.5	35

12.1. Administration of Test Item

The Test Item will be administered to the appropriate animals via intramuscular injection into the lateral compartment of the thigh once on Day 1. The volume for each dose will be administered using a syringe/needle. The day of dosing will be designated as Day 1.

The injection area will be marked as frequently as required to allow appropriate visualization of administration sites. Hair may be clipped or shaved if required to improve visualization of the injection sites. The injection site will be documented in the raw data.

12.2. Justification of Route and Dose Levels

The intramuscular route of exposure was selected because this is the intended route of human exposure.

The dose levels selected in this study are based upon pharmacologically active dose levels determined in rodent studies administered via this route. These dose levels are expected to produce sufficient tissue concentrations for quantitation in this tissue distribution study.

13. IN-LIFE PROCEDURES, OBSERVATIONS, AND MEASUREMENTS

The in-life procedures, observations, and measurements listed below will be performed for all main study animals. During the study, additional evaluations to those described below and/or scheduled, and considered necessary by the Study Director and/or Veterinarian to assess health

status will be conducted and duly documented. More frequent observations may be undertaken if considered appropriate.

13.1. Mortality/Moribundity Checks

Frequency: Twice daily, once in the morning and once in the afternoon,

throughout the study.

Procedure: Animals will be observed for general health/mortality and

moribundity. Animals will not be removed from cage during observation, unless necessary for identification or confirmation of

possible findings.

13.2. Clinical Observations

13.2.1. Cage Side Observations

Frequency: Once on Day -1 and once daily throughout the study; target time of

4 to 6 hours postdose on day of dosing and approximately the same

time each day thereafter.

Procedure: Animals will not be removed from the cage during observation,

unless necessary for identification or confirmation of possible

findings.

13.2.2. Detailed Clinical Observations

Frequency: Weekly

Procedure: Animals removed from the cage for examination.

13.3. Body Weights

Frequency: Weekly

Procedure: Animals will be individually weighed. A fasted weight will be

recorded on the day of necropsy. Terminal body weights will not be collected from animals found dead or euthanized moribund.

14. LABORATORY EVALUATIONS

14.1. Bioanalysis and Toxicokinetic Evaluation

Blood and tissue samples will be collected according to the following table (\pm 15 minutes).

TK Sample Collection Schedule

Group No.				Sample Collection Time Points (Time Postdose ^b) on Day 1					
110.		Maies	0° hr	2 hrs	8 hrs	24 hrs	48 hrs	72 hrs	120 hrs
	A	5	X	-	-	-	-	ı	-
	В	5	-	X	-	-	-	-	-
	С	5	-	-	X	-	-	-	-
1	D	5	-	-	-	X	-	-	-
	Е	5	-	-	-	-	X	-	-
	F	5	-	-	-	-	-	X	-
	G	5	-	-	-	-	-	-	X

x = Sample to be collected; -= Not applicable.

Any residual/retained bioanalytical samples will be maintained for a minimum of 6 months following issuance of the Draft Report after which samples will be discarded. Alternatively, residual/retained samples will be discarded prior to the 6 month period should the issuance of the Final Report occur prior to the end of the 6 month retention period. An earlier discard of these residual/retained samples may also be requested and authorized by the Study Director.

14.1.1. Bioanalytical Blood Sample Collection

Blood will be collected from jugular venipuncture at termination and, if possible, from animals that are preterminally euthanized.

Target Blood Volume: 1.0 mL Anticoagulant: K₂EDTA

Processing: To plasma; blood samples will be kept on wet ice prior to

processing. The samples will be centrifuged within 30 minutes in a refrigerated centrifuge (set to maintain 4°C) for 15 minutes at 3000 x g. Immediately after plasma collection, plasma will be aliquoted into 2 x 100 μ L aliquot and a leftover (if available). Aliquots will be snap frozen in liquid nitrogen and put on dry ice.

Storage conditions: Samples will be stored in a freezer set to maintain -80°C until

analysis.

Disposition: Plasma samples will be used for mRNA quantitation by the

Immunology department using a bDNA method. The procedure to

Study Plan Amendment 2

Test Facility Study No. 5002121

^a Sample will be collected before dosing.

b TK time point starts at the perfusion.

be followed during the course of this study along with the assay for acceptance criteria will be detailed in the appropriate analytical procedure. Samples will be analyzed in duplicate.

Any residual/retained bioanalytical samples will be discarded before issue of the Final Report.

14.1.2. Bioanalytical Tissue Sample Collection

Lung (left lobe), liver (left lateral), heart (ventricle bilateral), right kidney, axillary distal lymph nodes (bilateral pooled to a target mass of 1.5 mg per animal; 1 aliquot or 2, if possible), proximal popliteal and inguinal lymph nodes (bilateral pooled to a target mass of 1.5 mg per animal; 1 aliquot or 2, if possible), spleen, brain (left hemisphere), stomach (glandular region), testes (right testicle), eye (left), bone marrow femur (bilateral pooled in the same aliquot), jejunum (middle region), and injection site muscle (homogenized and split in 3 aliquots) will be collected following isoflurane anesthesia for terminal collection. Samples collected from all study animals at the scheduled necropsy will be analyzed. No samples will be collected from animals that are found dead or preterminally euthanized.

Target weight: 2 x 50 mg or maximum obtainable if less than 2 x 50 mg; except for the

bone marrow (1 aliquot) and the injection site (3 aliquots).

Processing: Animal will be flushed with Sodium chloride with Heparin and sodium

nitrite solution to remove blood as much as possible in the tissues and then with PBS 1X. Tissues will be then collected, rinsed with 1X PBS (except bone marrow), dried on paper towel (except bone marrow), weighed, and immediately snap frozen on liquid nitrogen (target of 1 minute after collection), and kept on dry ice. Feces from bowel tissues will be

removed before processing.

Storage conditions: Samples will be stored in a freezer set to maintain -80°C until analysis.

Disposition: Samples collected from all study animals at the scheduled necropsy will

be analyzed. Samples (2 x 50 mg) will be used for mRNA quantitation by the Immunology department using a bDNA method. The procedures to be

followed during the course of this study along with the assay for acceptance criteria will be detailed in the appropriate analytical

procedures. Samples will be analyzed in duplicate.

Any residual/retained bioanalytical samples will be discarded before issue of the Final Report.

14.1.3. Toxicokinetic Evaluation

Toxicokinetic (TK) parameters will be estimated using Phoenix pharmacokinetic software. A non-compartmental approach consistent with the intramuscular route of administration will be used for parameter estimation. All parameters will be generated from mRNA-1647 concentrations in plasma and tissues from all TK occasions, whenever practical.

Parameters to be Estimated

Parameter	Description of Parameter
Tmax	The time after dosing at which the maximum observed concentration was observed
Cmax	The maximum observed concentration measured after dosing
AUC(0-t)	The area under the concentration versus time curve from the start of dose administration to the time after dosing at which the last quantifiable concentration was observed, using the linear or linear/log trapezoidal method.

When data permits, the slope of the terminal elimination phase of each arithmetic mean concentration versus time curve will be determined by log-linear regression, and the following additional parameters will also be estimated.

Additional Parameters to be Estimated

Parameter	Description of Parameter	
T1/2	The apparent terminal elimination half life.	

Descriptive statistics (number, mean, median, standard deviation, standard error, etc.) will be reported as deemed appropriate and when possible, as well as ratios for appropriate grouping and sorting variables will be generated using Phoenix. TK table and graphs will also be generated by Phoenix.

15. TERMINAL PROCEDURES

Terminal procedures are summarized in the following table:

Terminal Procedures for Main Study Animals

Cwarm Na	No. of Animals	Scheduled	Necropsy Procedures			
Group No.	Males	Euthanasia Day	Necropsy	Tissue Collection	Sample Tissue Weights	
	15	1				
	5	2	1			
1	1 5 3 X	X ^a	X			
	5	4]			
	5	6				
Unscheduled Deaths		X	Standard Diagnostic List	-		
Replaced animals (prestudy)		X	Standard Diagnostic List	-		
Replaced a	Replaced animals (after dosing start)		X	Standard Diagnostic List	-	

X =Procedure to be conducted; - =Not applicable.

^a Consisting of blood, lung (left lobe), liver (left lateral), heart (ventricle bilateral), right kidney, axillary distal lymph nodes (bilateral pooled to a target mass of 1.5 mg per animal; 1 aliquot or 2, if possible), proximal popliteal and inguinal lymph nodes (bilateral pooled to a target mass of 1.5 mg per animal; 1 aliquot or 2, if possible), spleen, brain (left hemisphere), stomach (glandular region), testes (right testicle), eye (left), bone

Croup No.	No. of Animals	Scheduled	Necropsy Procedures		
Group No.	Males	Euthanasia Day	Necropsy	Tissue Collection	Sample Tissue Weights

marrow femur (bilateral pooled in the same aliquot), jejunum (middle region), and injection site muscle (homogenized and split in 3 aliquots).

15.1. Unscheduled Deaths

If a main study animal dies on study, a complete necropsy examination will be conducted and limited tissue (standard diagnostic tissue list) will be retained. If necessary, the animal will be refrigerated to minimize autolysis.

Main study animals may be euthanized for humane reasons as per Test Facility SOPs. The samples for laboratory evaluations will be obtained if possible as specified in Section 14. These animals will undergo exsanguination by incision from the abdominal aorta following isoflurane anesthesia unless deemed inappropriate by the Study Director and/or the clinical veterinarian. These animals will undergo necropsy, and limited tissues (standard diagnostic tissue list) will be retained. If necessary, the animal will be refrigerated (set to maintain 4°C) to minimize autolysis.

Animals found dead or euthanized before the initiation of dosing will be subject to complete necropsy examination and limited tissue retention (standard diagnostic tissue list). Any animal replaced after the start of dosing will be subject to complete necropsy examination and limited tissue retention (standard diagnostic tissue list), and any data generated will not be included in the report unless deemed appropriate by the Study Director.

15.2. Scheduled Euthanasia

Main study animals surviving until scheduled euthanasia will have a terminal body weight recorded, blood samples for laboratory evaluations will be collected (as appropriate), and will undergo isoflurane anesthesia followed by whole-body perfusion with NaCl 0.9 %, Heparin (1000 IU/L), 1 % sodium nitrite and then PBS 1X. Animals will be fasted overnight before their scheduled necropsy.

15.3. Necropsy

Main study animals will be subjected to a complete necropsy examination, which will include evaluation of the carcass and musculoskeletal system; all external surfaces and orifices; cranial cavity and external surfaces of the brain; and thoracic, abdominal, and pelvic cavities with their associated organs and tissues.

Necropsy procedures will be performed by qualified personnel with appropriate training and experience in animal anatomy and gross pathology. A veterinary pathologist, or other suitably qualified person, will be available.

At the discretion of the necropsy supervising pathologist, images may be generated for illustration of or consultation on gross observations. Generation of such images will be

documented and communicated to the Study Director. Images and associated documentation will be retained and archived.

15.4. Sample Tissue Weights

Samples of lung (left lobe), liver (left lateral), heart (ventricle bilateral), right kidney, axillary distal lymph nodes (bilateral pooled to a target mass of 1.5 mg per animal; 1 aliquot or 2, if possible), proximal popliteal and inguinal lymph nodes (bilateral pooled to a target mass of 1.5 mg per animal; 1 aliquot or 2, if possible), spleen, brain (left hemisphere), stomach (glandular region), testes (right testicle), eye (left), bone marrow femur (bilateral pooled in the same aliquot), jejunum (middle region), and injection site muscle (homogenized and split in 3 aliquots) will be weighed at necropsy for all scheduled euthanasia animals. Sample tissue weights will not be recorded for animals found dead or euthanized in poor condition or in extremis.

16. STATISTICAL ANALYSIS

Means and standard deviations will be calculated for all numerical data.

17. COMPUTERIZED SYSTEMS

The following critical computerized systems may be used in the study. The actual critical computerized systems used will be specified in the Final Report.

Data for parameters not required by study plan, which are automatically generated by analytical devices used will be retained on file but not reported. Statistical analysis results that are generated by the program but are not required by study plan and/or are not scientifically relevant will be retained on file but will not be included in the tabulations.

Critical	Computerized	Systems
----------	--------------	---------

System Name	Description of Data Collected and/or Analyzed
Provantis	In-life; postmortem
Dispense	Test Material receipt, accountability
Mesa Laboratories AmegaView CMS	Continuous Monitoring System. Monitoring of standalone fridges, freezers, incubators, and selected laboratories to measure temperature, relative humidity, and CO2, as appropriate
Johnson Controls Metasys	Building Automation System. Control of HVAC and other building systems, as well as temperature/humidity control and trending in selected laboratories and animal rooms
Empower 3 (Waters Corporation)	Data acquisition for dose formulation analysis, including regression analysis and measurement of concentration and recovery of dose formulations using HPLC
Phoenix	Computation of non-compartmental analysis, descriptive statistics and ratios, as well as graphical and tabular output
Analyst (AB Sciex)	Bioanalytical data collection
Watson Laboratory Information Management system (Thermo Scientific)	Regression analysis and descriptive statistics of bioanalytical data
Bio-Plex Manager	Data acquisition and regression for Luminex data

SOFTmax® PRO	Bioanalytical data collection and/or regression analysis
(Molecular Devices Corporation)	Bloanarytical data collection and/or regression analysis

18. AMENDMENTS AND DEVIATIONS

Changes to the approved study plan shall be made in the form of an amendment, which will be signed and dated by the Study Director. Every reasonable effort will be made to discuss any necessary study plan changes in advance with the Sponsor.

All study plan and SOP deviations will be documented in the study records. Deviations from the study plan and/or SOP related to the phase(s) of the study conducted at a Test Site shall be documented, acknowledged by the PI/IS, and reported to the Study Director for authorization/acknowledgement. The Study Director will notify the Sponsor of deviations that may result in a significant impact on the study as soon as possible.

19. RETENTION OF RECORDS, SAMPLES, AND SPECIMENS

All study-specific raw data, electronic data, documentation, study plan, retained samples and specimens, and interim (if applicable) and final reports will be archived by no later than the date of final report issue. All materials generated by Charles River from this study will be transferred to CR-MTL archive. One year after issue of the draft report, the Sponsor will be contacted to determine the disposition of materials associated with the study.

Records to be maintained will include, but will not be limited to, documentation and data for the following:

- Study Plan, study plan amendments, and deviations
- Study schedule
- Study-related correspondence
- Test system receipt, health, and husbandry
- Test Item and Vehicle receipt, identification, preparation, and analysis
- In-life measurements and observations
- Clinical pathology sample collection and evaluation
- Laboratory evaluations sample collection and evaluation
- Gross observations and related data
- Statistical analysis results

20. REPORTING

A comprehensive Draft Report will be prepared following completion of the study and will be finalized following consultation with the Sponsor. The report will include all information

necessary to provide a complete and accurate description of the experimental methods and results and any circumstances that may have affected the quality or integrity of the study.

The Sponsor will receive an electronic version of the Draft and Final Report provided in Adobe Acrobat PDF format (hyperlinked and searchable at final) along with a Microsoft Word version of the text. The PDF document will be created from native electronic files to the extent possible, including text and tables generated by the Test Facility. Report components not available in native electronic files and/or original signature pages will be scanned and converted to PDF image files for incorporation. An original copy of the report with the Test Facility's handwritten signatures will be retained.

Reports should be finalized within 6 months of issue of the Draft Report. If the Sponsor has not provided comments to the report within 6 months of draft issue, the report will be finalized by the Test Facility unless other arrangements are made by the Sponsor.

21. ANIMAL WELFARE

21.1. Institutional Animal Care and Use Committee Approval

The study plan and any amendment(s) or procedures involving the care and use of animals in this study will be reviewed and approved by CR SHB Institutional Animal Care and Use Committee (IACUC). During the study, the care and use of animals will be conducted with guidance from the USA National Research Council and the Canadian Council on Animal Care (CCAC).

AMENDMENT APPROVAL

FDA-CBER-2021-4379-0001273

SPONSOR APPROVAL

The Study Plan Amendment was approved by the Sponsor by email on 25 Jul 2017.

DEVIATIONS

All deviations that occurred during the study have been authorized/acknowledged by the Study Director, assessed for impact, and documented in the study records. Only minor SOP deviations that did not impact the quality or integrity of the study occurred during the course of the study.

200 Tech Square • Cambridge, MA 02139 phone 617-714-6500 • fax 617-583-1998

Summary of Analysis

Document number	DPAD-SOA-0006.1		
Date of Document Generation	06 Jul 2017		
Revision	001		
Product name	mRNA-1647 test article		
Product description	mRNA-1647 LNP in 100mM Tris, 7% PG, 1mM DTPA, pH 7.75		
Lot No.	MTDP 17048		
	MTDS16019		
	MTDS16020		
n charten	MTDS16034		
Drug Substance (API)	MTDS16035		
	MTDS16033		
	MTDS16027		
Date of Manufacture	20 Apr 2017		
Time Point	T = Initial		
Storage	-20°C		
Retest Period	20 Apr 2018		

Test	Method	Testing Reference	Acceptance Criteria	Re	sults
Appearance	Visual	2017_04_28- 010	White to off-white dispersion, essentially free from particulates	Pass RT matches Reference Standards*	
ID	qPCR DPTM-0017 (Draft)	2017_06_01- 020*	C _T ≤ 25		
mRNA Content	HPLC-IEX DPTM-0024	2017_04_20- 010	1.6 mg/mL – 2.4 mg/mL	1.9 n	ng/mL
	HPLC-RPIP 2017_06_01- DPTM-0026 020	1 A	Report Results	Peak	% Area
				uL131	15.7
				uL128	15.4
				uL130	14.1
mRNA Purity				gL	15.8
				gH	13.6
				gB	16.5
			Total	91.1	
% Encapsulation	RB Flourescence DPTM-0011	2017_06_09- 011	≥ 80%	92%**	
Particle Size	DLS DPTM-0031	2017_05_05- 034	Z-ave	85 nm	

Doc: DPAD-SOA-0006.1 Page 1 of 2

200 Tech Square • Cambridge, MA 02139 phone 617-714-6500 • fax 617-583-1998

Polydispersity Index	DLS DPTM-0031	2017_05_05- 034	≥ 0.3		0.2	
			Peak	Concentration (mg/mL)	Peak	Concentration (mg/mL)
	UPLC-CAD	2017_05_22-	SM102	15.5-25.9	SM-102	18.0
Lipid	DPTM-0019		Cholesterol	6.5-10.9	Cholestero	
	DP11M-0019	023	DSPC	3.5-5.8	DSPC	4.0
			PEG-DMG	1.6-2.7	PEG-DMG	
			Total Deg	Report	% Total Are	
рН	USP <791>	2017_05_01- 002	pH 7.0-8.0		pH 7.6	
Osmolality	USP <785>	2017_05_05- 035	Report Result		1294 mOsm/kg	
Residual Ethanol	Headspace-GC	N/A	≤ 5000 ppm		Pending result	
Particulate	USP <788>,	Study Number 963886-S01	# of Size Particles/C ontainer		Size	# of Particles/C ontainer
Matter	Method 2	30000 002	≤ 10 µm	≤ 3000	≤ 10 µm	16
			≤ 25 µm	≤ 300	≤ 25 µm	5
Endotoxin	USP <85> (Kinetic turbidimetry)	Report 0517- 054	≤ 10 EU/mL		< 1 EU/mL (Beginning, Middle and End)	
		Study Number 963887-S01	Туре	CFU Count	Туре	CFU Count
Bioburden	USP <61>			≤ 1 CFU/10mL	TAMC	< 1 CFU/10mL
			1.1.00.000.000.00	≤ 1 CFU/10mL	TYMC	< 1 CFU/10mL

^{**}t-1M data. t-initial was not tested

Data
Approved:

(b) (6)

Senior Scientist, DP Analytical Development

(b) (6)

Date: (Valut 2017

Doc: DPAD-SOA-0006.1

Page 2 of 2

^{**}qPCR will be tested for confirmation. HPLC-RPIP data was leveraged for ID

NON-GLP FINAL REPORT

Study Phase: Analytical Chemistry

Test Facility Study No. 5002121

TEST FACILITY:

Charles River Laboratories Montreal ULC Sherbrooke Site (CR SHB)

Page 1 of 22

TABLE OF CONTENTS

LIST OF TABLES	3
LIST OF APPENDICES	3
1. SUMMARY	
2. INTRODUCTION	
 EXPERIMENTAL DESIGN. Dose Formulation Analysis. 	
4. MATERIALS AND METHODS	4
4.1. Materials	4
4.1.1. Reference Standard	4
4.1.2. Reference Material	5
4.1.3. Characterization of Reference Standard and Reference Material	5
4.1.4. Inventory and Disposition of Reference Standard and Reference Material	
4.2. Methods.	
4.2.1. Analytical Procedures	5
4.3. Computerized Systems.	6
5. RESULTS AND DISCUSSIONS	6
5.1. Dose Formulation Analysis	
6. CONCLUSION	6
7. REPORT APPROVAL	7

LIST OF TABLES

Table 1	Study Samples - Concentration and Homogeneity	8
	LIST OF APPENDICES	
Appendix 1	Analytical Procedure	9
Appendix 2	Certificates of Analysis	17

1. SUMMARY

Dose formulation samples have been analyzed by Ion Exchange High Performance Liquid Chromatography (IEX-HPLC) for the determination of mRNA-1647.

The dose formulations were within specification. Homogeneity testing showed that the formulation technique used produced homogeneous preparations.

2. INTRODUCTION

This report describes the analytical evaluation of mRNA-1647 in dose formulations (phosphate-buffered saline (PBS) pH 7.2) in the bulk test item from Study 5002121.

For the work detailed in this report, the analytical phase experimental start date was 10 Jul 2017, and the analytical phase experimental completion date was 11 Jul 2017.

3. EXPERIMENTAL DESIGN

3.1. Dose Formulation Analysis

Analysis of dose formulations was carried out with regard to concentration and homogeneity.

On Day 1 of the study, duplicate samples were collected from the top, middle and bottom strata of Group 1 dose formulation. The samples were shipped on ice packs and analyzed on the same day.

4. MATERIALS AND METHODS

4.1. Materials

4.1.1. Reference Standard

Identification: CX-0005128 mRNA

Physical Description: Clear, colorless solution

Batch/Lot No.: MTDS16027

Concentration: 1.95 mg/mL (used for calculations)

Retest Date: Oct 2017

Storage Conditions: Kept in a freezer set to maintain -20°C

Supplier: Moderna Therapeutics, Inc.

4.1.2. Reference Material

Identification: mRNA-1647

Physical Description: 0.5 mL per vial, white to off-white lipid nanoparticle dispersion

Batch/Lot No.: MTDP17015

Concentration: 2.4 mg/mL (used for calculations)

Date of Manufacture: 24 Feb 2017 Retest Date: 24 Feb 2018

Storage Conditions: Kept in a freezer set to maintain -20°C

Supplier: Moderna Therapeutics, Inc.

4.1.3. Characterization of Reference Standard and Reference Material

The Sponsor provided the documentation for the identity, strength, purity, composition, and stability for the reference standard and reference material. Copies of the supplied Summary of Analysis (SoA) or equivalent documentation are presented in Appendix 2.

4.1.4. Inventory and Disposition of Reference Standard and Reference Material

Records of the receipt, distribution, and storage of the reference standard and reference material were maintained. All unused Sponsor-supplied reference standard and reference material were retained for use on subsequent studies for the Sponsor.

4.2. Methods

4.2.1. Analytical Procedures

The method for concentration analysis is documented in Analytical Procedure AP.5002121.SP.01 (Appendix 1) and was previously validated under Study Nos. 1802050. Concentration stability data were generated by the department of Analytical Chemistry, Charles River, CR MTL for 1 day, 6 days, and 8 days, for formulation samples stored at ambient temperature, in a refrigerator set to maintain 4°C and in a freezer set to maintain a temperature of -20°C, respectively, over the concentration range of 0.00888 - 2.40 mg/mL, under Study No. 1802050.

4.3. Computerized Systems

Critical computerized systems used in this study phase are listed below (see Text Table 1).

Text Table 1 Computerized Systems

System Name	Version No.	Description of Data Collected and/or Analyzed
		Data acquisition for dose formulation analysis, including
Empower 3 (Waters Corporation)	Build 3471 SR1	regression analysis and measurement of concentration and
		recovery of dose formulations using HPLC
		Continuous Monitoring System. Monitoring of standalone
Mesa Laboratories AmegaView CMS	v3.0 Build	fridges, freezers, incubators, and selected laboratories to
Mesa Laboratories Afflega view CMS	1208.8	measure temperature, relative humidity, and CO ₂ , as
		appropriate
		Building Automation System. Control of HVAC and other
Johnson Controls Metasys	MVE 7.0	building systems, as well as temperature/humidity control
		and trending in selected laboratories and animal rooms

5. RESULTS AND DISCUSSIONS

All results presented in the tables of the report are calculated using non-rounded values as per the raw data rounding procedure and may not be exactly reproduced from the individual data presented.

5.1. Dose Formulation Analysis

All study samples analyzed had mean concentrations within or equal to the acceptance criteria of \pm 15% (individual values within or equal to \pm 20%) of their theoretical concentrations. Results are presented in Table 1.

For homogeneity, the RSD of concentrations for all samples in each group tested was within the acceptance criteria of \leq 5%. Results are presented in Table 1.

6. CONCLUSION

The dose formulations were within specification. Homogeneity testing showed that the formulation technique used produced homogeneous preparations.

Date: 3/Oct 2017

Appendix 3

7. REPORT APPROVAL

(b) (6)
Individual Scientist, Analytical Chemistry

 Table 1
 Study Samples - Concentration and Homogeneity

Occasion (Sampling Date)	Group	Theoretical Concentration (mg/mL)	Sampling Location	Measured Concentration (mg/mL)	Percent of Theoretical	RSD (%)
	1 0.5	0.5	Т.,,	0.560	112	4.9
Day 1 (10 Jul 2017)			Тор	0.504	101	
			Middle	0.494	98.7	
				0.500	100	
			D - 44	0.505	101	
			Bottom	0.497	99.4	
			Mean	0.510	102	

Appendix 1 Analytical Procedure

Analytical Procedure (AP.5002121.SP.01)

Page 1 of 7

Determination of mRNA-1647 in Dose Formulations by Ion Exchange High Performance Chromatography Using Ultraviolet/Visible Detection

Reference Standard, Reference Material and Vehicle

Reference Standard

CX-0005128 mRNA (API)

Lot number

MTDS16027

Concentration (actual)

I.95 mg/mL

Reference Material

mRNA-1647

Description

White dispersion in lipid nanoparticles

Lot number

MTDP17015

Concentration (nominal)

2.4 mg/mL (to be used for calculations)

Vehicle

Phosphate-buffered Saline (PBS) pH 7.2

For storage conditions for reference standard and reference material supplied by the Sponsor, refer to the corresponding log sheets.

NOTES:

Modifications may be made to the chromatographic conditions in order to optimize the chromatography.
Solution volumes throughout this AP (including reagent solutions, blanks, standard stocks, standards
and spiked samples) may be scaled up or down as long as the final concentration remains the same as
specified in the procedure.
Any changes made are to be documented in the raw data of the run.
Unless otherwise indicated, information relating to the time of mixing/stirring, temperature or mixing
method used in the preparation of solutions, diluents, mobile phases and vehicle will be considered non-
critical. If a step is deemed critical, it will be noted within the procedure, and a positive entry will be
made in the raw data
The compound is a mRNA, benchwork and handling should be performed under clean conditions to limit RNase contamination. When possible use RNase free tubes, pipette and repeater tips for reference standard/test item dilutions. DO NOT VORTEX, mix manually by inversion.
The method was previously validated under study 1802050.

Analytical Procedure (AP.5002121.SP.01)

Page 2 of 7

HPLC Conditions

System Agilent Technologies 1200 series

Column Thermofisher Proswift WAX-1S Monolithic (50 x 4.6 mm)

Column temperature set at 60°C

Mobile phase A: 20 mM NaOH/Glycine, 25 mM sodium perchlorate in 20% Ethanol

B: 20 mM NaOH/Glycine, 500 mM sodium perchlorate in 20% Ethanol

Time (min)	Α%	В%
0	100	0
2.0	0	100
4.0	0	100
4.5	100	0
6.0	100	0

Flow rate 1.0 mL/min

Detection wavelength 260 nm Injection volume $10 \, \mu L$ Sample tray set at 4°C Retention time ~1.6 min

Run time 6 min

Reagents

Unless specified, reagents with appropriate grade (A.C.S., USP et al) or numerical purity will be used.

• Water (ultra pure water, UPW; in-house); RNase free water (molecular biology grade); Ethanol (200 proof, HPLC grade also acceptable); glycine (microbiology grade, 75.07 g/mol); sodium perchlorate monohydrate (HPLC grade, 140.46 g/mol); TRIS-EDTA (TE buffer, Fisher Scientific # BP1338) 100X solution; Triton X-100 reduced (Sigma-Aldrich # 282103 or equivalent), sodium chloride (biological grade, 58.44 g/mol) 10/1N hydrochloric acid (HCl) and 10/1N sodium hydroxide (NaOH); Phosphate-buffered Saline (PBS 1X, pH 7.2, without magnesium and calcium).

Analytical Procedure (AP.5002121.SP.01)

Page 3 of 7

Preparation of Solutions

Stock Mobile Phase Buffer 1 (25 mM NaOH/Glycine, pH 10.9 (pH 10 at column temp of 60°C))

- Weigh 7.66±0.05 g of glycine and transfer in a solution bottle.
- Add 10.0 mL of 10 N NaOH.
- Add 4000 mL of water (UPW) and mix to dissolve.
- Measure and adjust pH to 10.9±0.1 using 10N NaOH or 10N HCl solution.
- Store solution at ambient room temperature (expiry: two weeks).

Stock Mobile Phase Buffer 2 (20 mM NaOH/Glycine, pH 10.9 (pH 10 at column temp of 60°C) in 20% Ethanol)

- Transfer 3200 mL of Stock Mobile Phase buffer 1 in a solution bottle.
- Add 800 mL of Ethanol and mix well.
- Store solution at ambient room temperature (expiry: two weeks).

Mobile Phase A (20 mM NaOH/Glycine, 25 mM sodium perchlorate in 20% Ethanol)

- Transfer 2000 mL of Stock Mobile Phase Buffer 2 into a solution bottle.
- Add 7.0±0.05 g of sodium perchlorate monohydrate.
- Mix to dissolve.
- Store solution at ambient room temperature (expiry: two weeks).

Mobile Phase B (20 mM NaOH/Glycine, 500 mM sodium perchlorate in 20% Ethanol)

- Transfer 1600 mL of Stock Mobile Phase Buffer 2 into a solution bottle.
- Add 112.5±0.2 g of sodium perchlorate monohydrate.
- Mix to dissolve.
- Store solution at ambient room temperature (expiry: two weeks).

Diluent (2% Triton in 1X-TE Buffer and 150 mM sodium chloride)

- Add 100 mL of RNase free water into a clean container.
- Remove 1 mL of water from the tube.
- Add 1 mL of 100X TE buffer and mix.
- Add 2 g of Triton X-100 reduced and 0.876±0.01 g of sodium chloride.
- Mix well.
- Store solution at ambient room temperature (expiry: two weeks).

Analytical Procedure (AP.5002121.SP.01)

Page 4 of 7

Preparation of Standards (STDs)

Standard stocks (STD STK; nominal concentration 1.95 mg/mL)

- Thaw the reference standard (1.95 mg/mL) as supplied at room temperature.
- Mix well prior to use.
- Store the remaining bulk material under the original storage conditions.

Standard Working Solution (STD WS; nominal concentration 0.0263 mg/mL)

- Using a pipette, add 5.919 mL of diluent into an appropriate size tube and add 81 μL of STD STK (final volume = 6 mL).
- Mix.
- Store remaining in a refrigerator set to maintain 4°C (expiry: 5 days).

System calibration solution (CAL; 5.26 µg/mL)

Use STD D as CAL solution.

Standard

- Add the required volume of the diluent into appropriate size polypropylene tubes as per Table 1.
- Add the aliquots of the STD WS (0.0263 mg/mL) into the tube.
- Cap and mix.
- Transfer into an injection vial for analysis.
- Store the standard solutions in a refrigerator set to maintain 4°C (expiry: 5 days).

Table 1: Preparation of standards

STD identification	Volume of diluent (µL)	Aliquot of STD WS (µL)	Final volume (μL)	Nominal Concentration (µg/mL)
STD A	1000		1000	0
STD B	900	100	1000	2.63
STD C	850	150	1000	3.95
STD D	4000	1000	5000	5.26
STD E	600	400	1000	10.5
STD F	250	750	1000	19.7
STD G		1000	1000	26.3

Preparation of Blanks

Diluent blanks (Diluent BLK: n=2)

- Transfer approximately 1.00 mL of the diluent into injection vials.
- Store the blanks under the same storage conditions as standards.

Vehicle blank (V-BLK: n=2)

- Transfer 1000 μL of diluent into a 15 mL polypropylene tube.
- Add 1000 μL of vehicle directly in the tube.
- Mix
- Aliquot into injection vials for analysis.
- Store the vehicle blanks under the same storage conditions as for spike solutions.

Analytical Procedure (AP.5002121.SP.01)

Page 5 of 7

Preparation of Spikes

High spikes (SPK B; 2.40 mg/mL; n = 1)

- Thaw the reference material (2.4 mg/mL) as supplied at room temperature.
- Mix well prior to use.
- Store the remaining bulk material under the original storage conditions.

Low spikes (SPK A; 0.00888 mg/mL; n = 1)

- Accurately add 10.0 mL of vehicle into an appropriate size tube.
- Remove 37 µL of vehicle from the tube.
- Aliquot 37 μL of reference material (2.4 mg/mL) into the tube.
- Cap and mix
- Store unprocessed spikes in a refrigerator set to maintain 4°C (expiry: 6 days).

Dilution of spikes

- Aliquot the required amount of diluent directly into an appropriate size tube.
- Add the aliquots of spikes to each tube.
- · Cap and mix.
- Sonicate for 15 minutes.
- Transfer into an injection vial for analysis.
- Store solutions in a refrigerator set to maintain 4°C (expiry: 5 days).

Table 2. Dilution of spiked samples

SPK ID	Volume of diluent (µL)	Aliquot of SPK (µL)	Final Volume (mL)	Injected concentration (µg/mL)	Dilution Factor
SPK A (n=2)	1000	1000	2.00	4.44	2
SPK B (n=2)	4955	45.0	5.00	21.6	111

Analytical Procedure (AP.5002121.SP.01)

Page 6 of 7

Analysis of Suspension Formulation Samples

Sampling

- Request samples (0.5 mL) are taken from the dose formulations and transferred into appropriate containers by the formulation laboratory.
- Store samples in a refrigerator set to maintain 4°C (expiry: 6 days).

Sampling preparation

- Aliquot the required amount of diluent directly into an appropriate size tube as per Table 3.
- Add the aliquots of sample to each tube.
- Cap and mix.
- Sonicate for 15 minutes.
- Transfer into an injection vial for analysis.
- Store processed samples in a refrigerator set to maintain a temperature of 4°C (expiry: 5 days).

Table 3. Dilution of dose formulation samples

		Dilution			
Sample identification	Volume of diluent (mL)	Aliquot of sample (µL)	Final volume in diluent (mL)	Injected concentration (µg/mL)	Dilution factor
Group 1 (0.5 mg/mL)	1.95	50.0	2	12.5	40

Injection Sequence (suggested sequence)

Note (procedure to be used if significant amount of carry-over is found after first 3 injection of <u>CAL</u>): To minimize and control carry-over, inject standards, blanks and spiked samples in group from low to high concentration. After injection of each group, inject diluent <u>in triplicate</u> to clean up carry-over.

- Inject a CAL in triplicate to verify system suitability (ensure that %RSD is ≤3% before proceeding with further injection).
- Inject diluent in triplicate (not reported, to clean up carry-over).
- In sequence, inject standards, Diluent BLKs, Vehicle BLKs, spikes, and study samples inserting a CAL after a certain number (preferably ~10) of injections (changes may be made to this sequence).
- Inject a CAL solution in triplicate at the end (the %RSD should be ≤ 3% and the percentage difference with the beginning should be ±10%).

Calculations

System suitability

 Calculate the relative standard deviation (%RSD) in response of CAL (n = 3) using the following equation:

% RSD= (SD \div A) × 100

SD - standard deviation in response

A – average response

• Calculate system stability using the following equation:

 $(A_2 - A_1) \div A_1 \times 100$

 A_1 – average response (n = 3) of CAL at the beginning of the run.

 A_2 – average response (n = 3) of CAL at the end of the run.

Analytical Procedure (AP.5002121.SP.01)

Page 7 of 7

Standard curve

Perform the least squares fit regression of peak area versus concentration (type of curve fit: linear; weighting factor: none).

Calculation of concentrations

Using Empower 3 Custom Field, calculate concentrations and accuracies of spikes and study samples.

Integration

Integration algorithm: Traditional

Acceptance criteria

Unless specified in the following or in the Study Plan, refer to SOP CAD-002 and SOP CAD-003 for acceptance criteria.

AP Version Control

Initial version.

Verified by Approved by	(b)	(6)
Authorized by		
Scientific Dire		

Date 06 Jul 2017

Date 06 Jul 2017

Appendix 2 Certificates of Analysis

Document Number: DSAD-SOA-0025

Version: 3.0 CX-005128 MTDS16027 SoA Final Date: 13 Apr 2017

200 Technology Square • Cambridge, MA 02139 Phone 617.714.6500 • Fax 617.583,1998

SUMMARY OF ANALYSIS

Sample Description:

CX-005128 mRNA

(mRNA API)

mRNA length:

659 nts

SCC:

 $32.60 \, \mu g/mL$

Plasmid ID:

PL-011212

Lot or Batch No: Diluent:

MTDS16027

Manufacturing Site:

2 mM Sodium Citrate, pH 6.5 Moderna Therapeutics

Date of Manufacture:

October 2016

Date of Analysis:

October 2016

Storage:

Shipping Temperature: $\leq -15^{\circ}C$

Storage Temperature: $-20^{\circ}C \pm 5^{\circ}C$

Retest Date:

October 2017

	TEST			
TEST	METHOD	SPECIFICATION	RESULT	REFERENCE
Identity	RT/Sanger Sequencing TSOP134.03	Sequence matches 100% description of the coding region	Sequence matches 100% description of the coding region	209-TSOP134-145.00
Appearance	SOP-0045, v1.0	Clear, colorless solution, no visible particulates	Clear, colorless solution, no visible particulates	2016_10_13-103- (b) (6)
Total RNA content	DSAD-TM-0019*	2 ± 1 mg/mL	1.95 mg/mL	2016_10_13-103- (b) (6)
Purity	DSAD-TM-0010	≥ 70 % main peak area	94.0 %	2016_10_13-103- (b) (6)
Product related impurities	DSAD-TM-0010	Report % Pre-main peak and % Post- main areas	Pre-main Peak = 5.2 % Post-main Peak = 0.8 %	2016_10_13-103- (b) (6)
рН	SOP-0046, v1.0	6.0 – 7.0	6.8	2016_10_13-103- (b) (6)
Residual DNA template	qPCR TSOP344.01	< 1 % (w/w)	0.000011 % (w/w)	209-TSOP344-146.00
Residual total protein	SOP-0182, v0.1	< 1 % (w/w)	< LOD (LOD=5 µg of Residual Protein/mL of mRNA)	2016_11_07-020- (b) (6)

CX-005128

This copy of the document was retrieved from the system by This document copy was retrieved on 19 Jun 2017.

version 03

Document Number: DSAD-SOA-0025

A-0025 Version: 3.0 CX-005128 MTDS16027 SoA Final Date: 13 Apr 2017

200 Technology Square • Cambridge, MA 02139 Phone 617.714.6500 • Fax 617.583.1998

Residual solvents				
TEA	SOP-0185, v0.1		< LOQ	2016_12_13-029-
IPA	SOP-0183, v0.1		1,505 ppm	(b) (6) 2016_10_21-018- (b) (6)
Ethanol	SOP-0183, v0.1	Report results	1,184 ppm	2016_10_21-018-
Hexylene glycol	SOP-0184, v0.1		Not detected	(b) (6) 2016_12_13-031- (b) (6) m
% Poly A tailed RNA (% Tailless RNA)	DSAD-TM-0013	Report % main peak area	93.7 % (6.4 %)	2016_10_13-103- (b) (6)
% 5' Capped	DSAD-TM-0021	≥ 85% Capped	95.4 % Capped	2016_10_13-103- (b) (6)
Bacterial Endotoxins	USP<85>	≤ 40 EU/mg	0.049 EU/mg	PD Batch Record MTDS16027
Bìoburden	USP<61>	≤ 1 CFU/10 mL	< 1 CFU/10 mL	< 1 CFU/10 mL

^{*}Total RNA Content per Method SOP-0044, v1.0: 1.67 mg/mL (Reference: 2016_10_13-103- (b) (6)

Signatures: (b) (6)	12 Azar/7 Date: 12 AB R2017- Date:

CX-005128

This copy of the document was retrieved from the system by This document copy was retrieved 34°19 mm 2017.

version 03

500 Tech Square • Cambridge, MA 02139 Phone 617-714-6500 • fax 617-583-1998

Summary of Analysis

Document number	DPAD-SOA-0002		
Date of Document Generation	30 May 2017		
Revision	002		
	mRNA-1647 (CVM 1-6) in 100 mM TRIS		
Product\Test Article	60 mM NaCl 7% (w/v PG)		
	2.4 mg/mL , 0.5mL Fill volume		
Lot No.	MTDP17015		
Moderna Protocol	DPAD-PRO-0003		
Drug Substance (API)	See Table Below		
Date of Manufacture	24 Feb 2017		
Stability Initiation Date	13 Mar 2017		
Stability Time Point	T=0, Release		

CMV Construct #	CX Number	Drug Substance Lot	Construct Name
1	CX000667	MTDS16019	gB
2	CX000359	MTDS16020	UL128
3	CX000594	MTDS16034	gL
4	CX000712	MTDS16035	UL130
5	CX005282	MTDS16033	gH
6	CX005128	MTDS16027	UL131A

Test	Method	Testing Reference	Target Attributes	Results
mRNA Content	HPLC-AEX (DPTM-024.2)	2017_03_12-003	1.9-2.9 mg/mL	2.4 mg/mL
Endotoxin	USP <85>	0317-022 (ACCI)	<10 EU/mL	<1 EU/mL
Bioburden	USP <61>	949975-S01 (Nelson Labs)	<1CFU/10mL TAMC <1CFU/10mL TYMC	<1CFU/10mL TAMC

Author: (b) (6) Principal Scientist, (b) (6) DP Analytical Development

Data reviewed:

(b) (6)

Senior Director, DP Analytical Development

late: 31-ma-(- 17

Data generated in accordance with standard Moderna Therapeutics laboratory Practices and have been verified for accuracy

Doc: DPAD-SOA-0002

Page 1 of 2

200 Tech Square • Cambridge, MA 02139 phone 617-714-6500 • fax 617-583-1998

Summary of Analysis

Document number	DPAD-SOA-0002		
Date of Document Generation	15 Jun 2017		
Revision	003		
Product name	mRNA-1647 Test Article		
Product description	mRNA-1647 LNP in 100 mM Tris, 60 mM NaCl, 7% PG		
Lot No.	MTDP 17015		
Drug Substance (API)	CX005128 Lot MTDS16027 (UL131) CX000359 Lot MTDS16020 (UL128) CX000712 Lot MTDS16035 (UL130) CX000594 Lot MTDS16034 (gL) CX005282 Lot MTDS16033 (gH) CX000667 Lot MTDS16019 (gB)		
Date of Manufacture	24-Feb-2017		
Re-test Date	24-Feb-2018		
Time Point	T = Initial		

Test	Method	Testing Reference	Target Attributes	Results
Appearance	Visual	2017_03_16- 005	White to off-white dispersion, no visible particulates	Conforms
mRNA Identification	qPCR	Outsourced	Matches target sequences	Conforms
mRNA Content	AEX-HPLC	2017_03_12- 003	1.9-2.9 (mg/mL)	2.4 mg/mL
mRNA ratio	qPCR	Outsourced	Report results	CX005128 Lot MTDS16027 (UL131) 1.00 CX000359 Lot MTDS16020 (UL128) 0.89 CX000712 Lot MTDS16035 (UL130) 0.88 CX000594 Lot MTDS16034 (gL)1.00 CX005282 Lot MTDS16033 (gH) 0.91 CX000667 Lot MTDS16019 (gB) 0.97
	RP-IP-HPLC (Length-based)	2017_03_15- 015	Report gB and gH Concentrations	gH 0.31 mg/mL gB 0.39 mg/mL
mRNA Purity	RP-HPLC (% Poly A Tail)	2017_03_15- 015	Report results	96.9%
% Encapsulation	RiboGreen	2017_03_12- 007	≥ 80%	95%
Particle Size	Dynamic Light Scattering	2017_03_12- 005	70 ± 30 nm	63 nm

Doc: DPAD-SOA-0001.4

Page 1 of 2

200 Tech Square • Cambridge, MA 02139 phone 617-714-6500 • fax 617-583-1998

Polydispersity	Dynamic Light Scattering	2017_03_12- 005	Report r	esults	0	.1	
			Lipid	Target Concentrat ion	Lipid	Concentration (mg/mL)	
				(mg/mL)	SM102	23.4	
Lipid	UPLC-CAD	2017_03_12-	SM102	17.2-28.6	Cholesterol	10.2	
Lipia	UPLC-CAD	002	Cholesterol	7.2-12.0	DSPC	5.4	
			DSPC	3.8-6.4	PEG-DMG	2.5	
			PEG-DMG	1.8-3.0	Total Impurity	2.69	
			Total Impurity (% Area)	Report	(% Area)	2.6%	
рН	USP <791>	2017_03_16- 005	Report result		7.3		
Osmolality	USP <785>	2017_03_16- 005	Report r	esult	1473 mOsm/kg		
Bacterial Endotoxin	USP 85 (Kinetic turbidimetry)	IC Number 0317-022	≤ 10 EU/mL		< 1.00 EU/	mL (BME)	
Particulate	USP 85	Study Number	Size	Target Number of Particles/mL	Size	*Number of Particles/mL	
Matter	051 05	949974-S01	≥ 10 µm	≤ 3000	≥ 10 µm	21	
					≥ 25 µm	5	
			≥ 25 µm	≤300			
		Study Number		Target CFU/10 mL		Target CFU/10 mL	
Bioburden	USP <61>	949975-S01	TAMC	≤1	TAMC	<1	
			TYMC	≤1	TYMC	<1	

^{*}Reported value is a pooled result with MTDP17017. The analytical lab provider assumed these lots were to be combined for this test.

Data Approved: (b) (6)

Senior Scientist, DP Analytical Development (b) (6)

Date: 225 in 207

Doc: DPAD-SOA-0001.4

Page 2 of 2

Individual Animal Mortality Explanation Page

Abbreviation	Description	Abbreviation	Description
AD or ACCD	Accidental death	REC	Recovery euthanasia
FD	Found dead	REL	Released
INTM	Interim	TE or TERM	Terminal euthanasia
NR	Not recorded	UE or UNSC	Unscheduled euthanasia

Note: This is a comprehensive list of abbreviations. All of the abbreviations listed may not be applicable to this report.

Note: Removal Time represents the time the removal was entered into the Provantis system and may not be representative of the time of death.

Dosing Information

Dosing information is abbreviated on various data outputs; the following represents the dosing information for this study.

Group No.	Test Item	Dose Level (μg)
1	mRNA-1647	100

Appendix 4

Individual Animal Mortality 5002121

Group	Dose Level	Sex	Animal	_	Day	Week	Removal Date	Removal Time	Time Slot	Removal Symptom	Pathology Reason
1	100 ug	Male	1001	1001	1	1	10JUL2017	9:15			TERM
			1002	1001	1	1	10JUL2017	10:01			TERM
			1003	1001	1	1	10JUL2017	10:38			TERM
			1004	1004	1	1	10JUL2017	11:10			TERM
			1005	1004	1	1	10JUL2017	11:40			TERM
			1006	1006	1	1	10JUL2017	13:03	•	•	TERM
			1007	1006	1	1	10JUL2017	13:47		•	TERM
			1008	1006	1	1	10JUL2017	14:23	•	•	TERM
			1009	1009	1	1	10JUL2017	14:56			TERM
			1010	1009	1	1	10JUL2017	15:29			TERM
			1011	1011	1	1	10JUL2017	19:05			TERM
			1012	1011	1	1	10JUL2017	19:40			TERM
			1013	1011	1	1	10JUL2017	20:09			TERM
			1014	1014	1	1	10JUL2017	20:50			TERM
			1015	1014	1	1	10JUL2017	21:27			TERM
			1016	1016	2	1	11JUL2017	11:07			TERM
			1017	1016	2	1	11JUL2017	11:44			TERM
			1018	1016	2	1	11JUL2017	12:16			TERM
			1019	1019	2	1	11JUL2017	12:51			TERM
			1020	1019	2	1	11JUL2017	13:26			TERM
			1021	1021	3	1	12JUL2017	11:13		•	TERM
			1022	1021	3	1	12JUL2017	11:42			TERM
			1023	1021	3	1	12JUL2017	12:17			TERM
			1024	1024	3	1	12JUL2017	12:56			TERM
			1025	1024	3	1	12JUL2017	13:27		•	TERM
				1026	4	1	13JUL2017	10:57		•	TERM
			1027	1026	4	1	13JUL2017	11:41			TERM
			1028	1026	4	1	13JUL2017	12:20	_		TERM
				1029	4	1	13JUL2017	12:54		•	TERM
				1029	4	1	13JUL2017	13:29			TERM
			1031	1031	6	1	15JUL2017	11:12			TERM
			1032	1031	6	1	15JUL2017	11:38		•	TERM
			1032		6	1	15JUL2017	12:12			TERM
			1034		6	1	15JUL2017	12:46		•	TERM
				1034	6	1	15JUL2017	13:24	•	•	TERM

Individual Clinical Observations Explanation Page

Abbreviation	Description	Abbreviation	Description
AM SIRT	Signs of ill health or reaction to	PM SIRT	Signs of ill health or reaction to
	treatment check in the morning		treatment check in the afternoon
CSO	Cage side observation	PostRx #	Observation post dosing
DE	Detailed examination	PreRx #	Observation predosing
During Rx/R#	Observation during dosing	Unsc #	Unscheduled examination
Vet Aid	Anything observed by Vet Aid	#	Number to avoid using the same timeslot/animal/day

Note: This is a comprehensive list of abbreviations. All of the abbreviations listed may not be applicable to this report.

Note: Only animals with findings are presented in this appendix.

Dosing Information

Dosing information is abbreviated on various data outputs; the following represents the dosing information for this study.

Group No.	Test Item	Dose Level (μg)
1	mRNA-1647	100

Individual Clinical Observations

5002121

Day numbers relative to Start Date

Group Sex	Animal	Clinical Sign	Site	-1 DE	1 DE	2 DE	3 DE	4 DE
1 m	1012	Skin, Scab	Hindpaw, Left	Х	Х			
	1016	Swollen Firm	Hindlimb, Right			3		
	1017	Swollen Firm	Hindlimb, Right			2		
	1018	Swollen Firm	Hindlimb, Right			2		
	1019	Swollen Firm	Hindlimb, Right			2		
	1020	Swollen Firm	Hindlimb, Right			3		
	1021	Swollen Firm	Hindlimb, Right				2	
	1022	Swollen Firm	Hindlimb, Right				2	
	1023	Swollen Firm	Hindlimb, Right				2	
	1024	Swollen Firm	Hindlimb, Right				2	
		Skin, Scab	Treatment Site No.01				X	
	1025	Swollen Firm	Hindlimb, Right				2	
		Skin, Scab	Treatment Site No.01				X	
	1026	Swollen Firm	Hindlimb, Right					1
	1027	Swollen Firm	Hindlimb, Right					1
	1028	Swollen Firm	Hindlimb, Right					1
	1029	Swollen Firm	Hindlimb, Right					1
	1030	Swollen Firm	Hindlimb, Right					1

Individual Body Weights Explanation Page

Abbreviation	Description	Abbreviation	Description
	Not scheduled to be performed / dead	TERR	Technical error
AVS	Suspected aberrant value	UPTD	Unable to perform due to technical difficulty
OA	Omitted activity	X	Excluded from mean

Note: This is a comprehensive list of abbreviations. All of the abbreviations listed may not be applicable to this report.

Dosing Information

Dosing information is abbreviated on various data outputs; the following represents the dosing information for this study.

Group No.	Test Item	Dose Level (μg)
1	mRNA-1647	100

Individual Body Weights

5002121

100 ug	Day(s) Relative to Start Date									
Group 1	-6	-1	1	2	3	4	6			
1001	267	306	309	-	-	-	-			
1002	291	335	343	-	-	-	-			
1003	268	308	315	-	-	-	-			
1004	288	335	339	-	-	-	-			
1005	292	344	353	-	-	-	-			
1006	286	337	341	-	-	-	-			
1007	294	340	346	-	-	-	-			
1008	287	323	333	-	-	-	-			
1009	281	325	329	-	-	-	-			
1010	282	320	324	-	-	-	-			
1011	279	318	326	-	-	-	-			
1012	279	314	321	-	-	-	-			
1013	271	311	317	-	-	-	-			
1014	286	340	347	-	-	-	-			
1015	267	311	316	-	-	-	-			
1016	281	322	-	317 !1	-	-	-			
1017	285	324	-	326	-	-	-			
1018	280	332	-	341	-	-	-			
1019	268	305	_	299 !1	_	_	_			

Individual Body Weights

5002121

100 ug	Day(s) Relative to Start Date								
Group 1	-6	-1	1	2	3	4	6		
1020	288	331	-	339	-	-	-		
1021	272	313	-	-	320	-	-		
1022	290	323	-	-	317	-	-		
1023	287	326	-	-	330	-	-		
1024	279	329	-	-	341	-	-		
1025	281	327	-	-	328	-	-		
1026	278	311	-	-	-	320	-		
1027	293	339	-	-	-	352	-		
1028	294	346	-	-	-	361	-		
1029	283	317	-	-	-	324	-		
1030	281	332	-	-	-	355	-		
1031	272	302	-	-	-	-	329		
1032	271	307	-	-	-	-	335		
1033	267	308	-	-	-	-	332		
1034	293	346	-	-	-	-	391		
1035	276	313	-	-	-	-	338		
Mean	281.1	323.4	330.6	324.4	327.2	342.4	345.0		
SD	8.6	12.9	13.7	17.3	9.4	19.0	25.9		
N	35	35	15	5	5	5	5		

NON-GLP FINAL REPORT

Study Phase: Bioanalytical Report (mRNA Quantitation)

Test Facility Study No. 5002121

TEST FACILITY:

Charles River Laboratories Montreal ULC Sherbrooke Site (CR SHB)

Page 1 of 62

TABLE OF CONTENTS

LIST	COF A	APPENDICES	3
1.	INTR	ODUCTION	4
2.	EXPI	ERIMENTAL PROCEDURES	4
2.1.		Materials and Methods	
2.1.1		Reference Standard	
2.1.2		Methods	
2.2.		Computerized Systems.	5
3.	RESU	JLTS AND DISCUSSIONS	5
3.1.		Standards and Quality Control Samples for mRNA-1647 Quantitation	
3.2.		Study Samples.	
4.	CON	CLUSION	7
5.	REPO	ORT APPROVAL	8

LIST OF APPENDICES

Appendix 1	Deviations	9
Appendix 2	AP.5002121.bDNAp.03	11
Appendix 3	AP.5002121.bDNAt.03	32
Appendix 4	AP.5002121.EXT.02	53
Appendix 5	Certificate of Analysis	60

1. INTRODUCTION

This report describes the evaluation of mRNA-1647 (uL131, uL128, uL130, gL, gH and gB) in rat plasma (K₂EDTA) and tissue samples from Study No. 5002121 titled "A Single Dose Intramuscular Injection Tissue Distribution Study of mRNA-1647 in Male Sprague-Dawley Rats".

For the work detailed in this report, the bioanalysis (mRNA-1647 quantitation) phase experimental start and end dates were 01 Aug 2017, and 24 Aug 2017, respectively.

2. EXPERIMENTAL PROCEDURES

2.1. Materials and Methods

2.1.1. Reference Standard

Identification: mRNA-1647

Physical Description: Opaque milky suspension

Lot No.: MTDP17048 RNA Content: 1.9 mg/mL

Retested Date: 20 Apr 2018 (1 year from manufacturing date: 20 Apr 2017)

Storage Conditions: Kept in a freezer set to maintain -20°C

Supplier: Moderna Therapeutics, Inc.

2.1.2. Methods

The methodology and materials used for the mRNA-1647 quantitation (uL131, uL128, uL130, gL, gH, and gB) analyses were detailed in the analytical procedures listed in the table below, only the latest version is appended:

Analyte	Matrix	Analytical Procedure(s) No.
mRNA-1647 (uL131, uL128, uL130, gL, gH and gB)	Plasma quantitation	AP.5002121.bDNAp.01, AP.5002121.bDNAp-02 and AP.5002121.bDNAp.03
	Tissue mRNA quantitation	AP.5002121.bDNAt.01, AP. 5002121.bDNAt-02 and AP.5002121.bDNAt.03
	Tissue sample processing	AP.5002121.EXT.01 and AP. 5002121.EXT.02

2.2. Computerized Systems

Critical computerized systems used in this study phase are listed below (see Text Table 1).

Text Table 1 Computerized Systems

System Name	Version No.	Description of Data Collected and/or Analyzed
Bio-Plex Manager	4.1 and 6.1	Data acquisition for mRNA quantitation
Watson LIMS	7.4.2 SP1	mRNA quantitation data regression
Mesa Laboratories AmegaView CMS	v3.0 Build 1208.8	Continuous Monitoring System. Monitoring of standalone fridges, freezers, incubators, and selected laboratories to measure temperature, relative humidity, and CO ₂ , as appropriate
Johnson Controls Metasys	MVE 4.0.4.	Building Automation System. Control of HVAC and other building systems, as well as temperature/humidity control and trending in selected laboratories and animal rooms

3. RESULTS AND DISCUSSIONS

3.1. Standards and Quality Control Samples for mRNA-1647 Quantitation

Standard, Quality control (QC) preparation and acceptance criteria are described in the analytical procedure (Appendix 2). Standard curve and quality control specifications are presented in Text Table 2.

Text Table 2 mRNA Standard Curve and Quality Controls Specifications

mRNA-1647	Range of the Curve (pg/mL)	LLOQ (pg/mL)	ULOQ (pg/mL)	LQC (pg/mL)	MQC (pg/mL)	HQC (pg/mL)
uL131, uL128, gL and gH	0.10 to 50.00	0.10	50.00	0.30	10.00	40.00
uL130 and gB	0.10* to 50.00	0.50	50.00	1.50	10.00	40.00

^{*} Accessory standard to help define the lower end of the calibration curve.

A total of 3 mRNA-1647 quantitation assays for plasma samples were performed and all assays met the method acceptance criteria. All results were reported from the assays that met the acceptance criteria.

A total of 23 mRNA-1647 quantitation assays for tissue samples were performed and all assays met the method acceptance criteria with the exception of four assays where several mRNAs failed to meet acceptance criteria. Root causes of these failures where due to probable technical oversights while spiking or loading the QC samples. All results were reported from the assays that met the acceptance criteria.

3.2. Study Samples

All study samples received for mRNA-1647 quantitation were processed and analyzed. One sample did not meet the acceptance criterion between replicate values (%CV > 25%), sample 1011 injection site for mRNA gB only. The mRNA gB results obtained were considered

to be appropriate for reporting since the concentrations observed were similar to the other animals from the same timepoint and therefore this did not impact the mRNA quantitation reported results.

4. CONCLUSION

All samples collected for the mRNA-1647 quantitation analyses were analyzed using a qualified bDNA method. Based on the acceptable performance of the standards and QCs during sample analysis, it is concluded that the concentration values reported for the study samples are valid. The study sample results are presented in the toxicology report.

5. REPORT APPROVAL

Appendix 1 Deviations

DEVIATIONS

All deviations that occurred during this study phase have been acknowledged by the Study Director, assessed for impact, and documented in the study records. No Study Plan deviations related occurred during this study phase, however there were deviations to the analytical procedures. None of the deviations were considered to have impacted the overall integrity of this study phase results.

Appendix 2 AP.5002121.bDNAp.03

ANALYTICAL PROCEDURE

Title: A MULTIPLEXING BRANCHED DNA (bDNA) METHOD FOR THE QUANTITATIVE DETECT	AP Number: AP.5002121.bDNAp.0	Effective Date: 3 Date of AP signature
OF mRNA IN RAT PLASMA BY LUMINEX	Page 1 of 8 pages	Supersedes: 02-Aug-2017
Approved by: (b) (6) Senior Research Scientist I, Immunology	(b) (6)	Date: 03Avg 2017
Authorized by: (b) (6) Associate Scientific Director, Immunology	(b) (6)	Date: 03Aug 2017

PURPOSE

To describe a multiplexing bDNA method for the quantitation of mRNA (UL128, UL130, UL131, gL, gH and gB) in rat plasma.

2. SCOPE

This analytical procedure applies to all personnel performing activities related to this method.

3. RESPONSIBILITY

All staff performing this assay are responsible for compliance with this analytical procedure.

4. REQUIRED FORM

Appendices should be verified by a Scientist prior to use.

Appendix #1 Assay Information Sheet (example of a document)

Appendix #2 Standards and QCs mRNA Preparation Sheet (example of a spreadsheet)

Appendix #3 Lysis Sheet (example of a document)

Appendix #4a Solution Preparation Sheet - Day 1 (example of a spreadsheet)

Appendix #4b Solution Preparation Sheet - Day 2 (example of a spreadsheet)

Appendix #5 bDNA Assay Sheet (example of a document)

Appendix #6 Study Sample Dilution Sheet (example of a spreadsheet)

5. MATERIALS/EQUIPMENT/REAGENT

Notes

- i. Materials can be substituted provided the same specifications are met.
- ii. The procedure may require other general laboratory supplies commonly used in the Immunology laboratory.

5.1. Materials/Equipment

- 96-well plate (pre-loading)
- Absorbent paper
- Foil plate sealers
- RNase wipes, Life Technologies, cat#: AM9786M
- Sterile reagent reservoirs
- Parafilm
- DNAse and RNAse free tubes (polypropylene, various caps, various sizes)
- Laboratory timer
- Pipettes (multi-channel, micro, repeater)
- Pipette tips and/or Eppendorf combitips with filter (various sizes)
- Centrifuge
- Controlled temperature shaker (set to maintain 60°C)
- Incubator (set to maintain 37°C)

- Shaking Incubator (set to maintain 54°C and 50°C)
- Laminar flow hood
- Bio-Plex Suspension Array
- Bio-Plex Manager™ Software
- Watson LIMS version 7.4.2 SP1 (or latest available version)
- Vortex mixe
- Plate shaker
- Hand-held magnetic washer

5.2. QuantiGene® Plex Assay kit

Affymetrix; cat#: QP1015; Lot #: refer to Appendix #1. Store as indicated below. Expiry date: as per manufacturer.

Note that when possible, the same kit lot number should be used for the entire study to reduce any potential assay variability due to change of reagent lots. Any new kit lot should be qualified prior to use. Quality Controls (QCs), LLOQ and ULOQ should be assessed at least n=3. The qualification of the new lot should meet the run acceptance criteria (acceptance criteria for LLOQ and ULOQ will be the same as the QCs). When these criteria are met the new kit lot is considered qualified. In the event where the same lot of kit cannot be used throughout the study and lot to lot variability is present, this should be considered in the interpretation of the results.

Kit components:

Component ID	Quantity	Storage
Proteinase K		F
Blocking Reagent		If required, aliquots (appropriate volumes) can be prepared on the first use.
Label Probe Solution		
Pre-Amplifier Solution		
Amplifier Solution		RF
SAPE		
SAPE Diluent		
Lysis Mixture		
Wash Buffer Component 1		
Wash Buffer Component 2		
SAPE Wash Buffer		
Magnetic Separation Plate(s)		RT
Plate seals		
Hybridization Plate(s)		
Pressure Seals		

5.3. QuantiGene Sample Processing Kit (Blood samples)

Affymetrix; cat#: QS0112; Lot #: refer to Appendix #1. Store as indicated below. Expiry date: as per manufacturer.

Kit components:

Component ID	Quantity	Storage	
Lysis mixture	5 x 50 mL	RT	
Proteinase K	5 x 3.25 mL	F	

18.00 (1.00 pp. 18.00 pp.	sedes: Page 3 of 8 pages
---	--------------------------

5.4. Other reagents

- Nuclease free water, Life Technologies, cat#: AM9932 (or 4387936)
- Rat plasma, CR MTL or Bioreclamation, catalog#: RATPLEDTA2. Refer to Appendix 1 for the lot number. Plasma can be pooled or aliquoted. Store DF. Expiry date: as per manufacturer.

Note: If deemed necessary, a screening check may be performed on plasma lots of plasma analyzed at least n = 1 (in replicates of two). The assay sequence should include a standard curve and QC samples in plasma. The purpose of this check is to determine if the plasma lot is deemed acceptable for the preparation of the standard curve and Study sample dilutions.

- 2.0 Probe Set (Panel 31377) (UL128, UL130, UL131, gL, gH and gB): Sponsor or Affymetrix, cat# QGP-210-M17051201, stored F.
- 2.0 Mag Capture Beads (Panel 31377) (uL128, uL130, uL131, gL, gH and gB): Sponsor or Affymetrix cat# QGP-210-M17051201, stored RF.
- mRNA-1647 (proportions are 1:1:1:1:1):
 Sponsor, lot: MTDP17048 (1.9 mg/mL), storage F.

6. PREPARATION OF ASSAY SOLUTIONS, STANDARDS, QUALITY CONTROLS (QCs) AND STUDY SAMPLES

Notes:

- Volumes described for any preparation may be scaled up or down proportionally as long as the target concentration is not changed. All changes must be documented in the raw data.
- ii. If the lot # of a reagent is recorded, the recording of the inventory # is not critical, since it is considered to be for information or reference purposes only. The only situation that would make the inventory # critical is for reagents that have an expiry date based on the receipt date.
- iii. Bring all reagents to RT before use.
- iv. All preparations should be performed under a laminar flow hood.

6.1. Lysis solution (code: LS)

- Pre-warm the Lysis mixture in an incubator set to maintain 37°C for at least 30 minutes prior to use.
- Referring to Appendix #4a, add 15960 µL of Lysis mixture, 31044 µL of Nuclease-free water and 996 µL of Proteinase K (50 U/µL) to an appropriate container (for a total volume of 48 mL).
- Invert to mix.
- Keep at RT until use.
- Expiry: To be used on the day of preparation.

6.2. Standards and Quality Control (QC) samples in plasma

Concentration: Refer to Appendix #1

- Referring to Appendix #2, add the appropriate volume of the appropriate Standard or QC stock to the appropriate volume of plasma.
- Mix
- Expiry: To be used on the day of preparation.

6.3. Study samples diluted in plasma or Lysis solution

- Referring to Appendix #6, add the appropriate volume of the appropriate Study sample to the appropriate volume of plasma or Lysis solution.
- Mix
- Expiry: To be used on the day of preparation.

6.4. Lysed Standards, QCs and Study sample(s)

- Referring to Appendix #3, add the appropriate volume of Standards, QCs and Study sample(s) to the appropriate volume of Lysis solution (LS).
- Mix

No: Date effective: Date of AP signature	Supersedes: 02-Aug-2017	Page 4 of 8 pages
--	----------------------------	-------------------

- Incubate as per Appendix #3.
- Lysed Standards and QCs may be discarded after use however Study samples lysates should be stored F. Expiry: SIP.

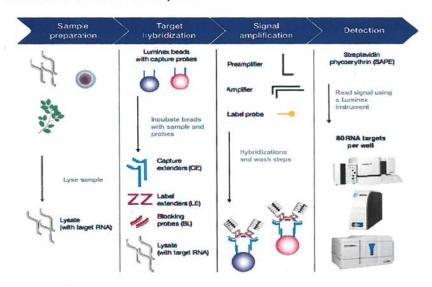
6.5. Working Bead Mix (code: wBM)

- Referring to Appendix #4a, combine 697 µL of Nuclease-free water, 884 µL of Lysis mixture, 268 µL of Blocking reagent, 27 µL of Proteinase K, 134 µL of Capture Beads (vortex 30 seconds prior to adding) and 670 µL of the appropriate Probe set into an appropriate container.
- Mix
- Keep at RT until use.
- Expiry: To be used on the day of preparation.

6.6. Wash Buffer 1X (code WB-bDNA)

- Referring to Appendix #4b, combine 189 mL of Nuclease-free water, 0.6 mL of Wash buffer component 1 and 10.0 mL of Wash buffer component 2 into an appropriate container.
- Mix
- Keep at RT until use.
- Expiry: To be used on the day of preparation.

6.7. Working SAPE solution (code wSAPE)


- Referring to Appendix #4b, combine 36 µL of SAPE (previously vortexed and briefly centrifuged) and 12 mL of SAPE Diluent into an appropriate container.
- Vortex 15 seconds and protect from light.
- Keep at RT until use.
- Expiry: To be used on the day of preparation.

7. ASSAY PROCEDURE

- 7.1. On Day 1, all steps should be performed under a laminar flow hood with the exception of the centrifugation and incubation steps. On Day 2, only the solution preparations should be performed under the laminar flow hood.
- 7.2. All solutions should be kept at RT prior to use.
- 7.3. Standards, QC samples and Study samples should be analyzed on the same plate. The Standards, QCs and Study samples will be analyzed in duplicates.
- 7.4. Study samples should be analyzed in batches so that the same time point will be represented in a single assay unless otherwise stated in advance prior to analysis. This will not be applicable to repeat analysis.
- 7.5. The sample MRD is 1/100.
- 7.6. A multi-channel pipette may be used for the washing steps even if its verification has expired.
- 7.7. Procedure to empty the wells with a hand-held magnetic washer:
 - Place the plate in a hand-held magnetic washer and wait 1 minute to appropriately trap the beads at the bottom of the wells.
 - Flick the plate to empty the wells, and then blot gently on absorbent paper.
 - Add 100 μL of the appropriate solution to each well and wait another minute.
 - Flick the plate to empty the wells, and then blot gently on absorbent paper.
 - Repeat wash step twice.
 - Keep the plate in the hand-held magnetic washer while adding the Pre-Amplification, Amplication, Label Probe and the Working SAPE solutions. Remove prior to the incubations.
- 7.8. Refer to Appendix #5 for the Assay procedure.

No: AP.5002121.bDNAp.03	Date effective: Date of AP signature	Supersedes: 02-Aug-2017	Page 5 of 8 pages
----------------------------	---	-------------------------	-------------------

- 7.9. If the reading of the plate needs to be stopped due to a reading malfunction, repeat the last wash step, add 100 µL of SAPE Wash buffer and empty the wells. Add 130 µL of SAPE Wash buffer in all wells of the assay plate. Incubate the plate at RT protected from light on a plate shaker set at 600 rpm for at least 3 minutes and re-read the entire plate. This should be documented in the raw data.
- 7.10. Before reading the plate, a prime function must be run.
- 7.11. If more than one plate is read, a wash between plate function must be performed between plates.
- 7.12. Scheme of QuantiGene Plex Assay Basics1

¹Reference: Affymetrix QuantiGene® Plex Assay User Manual (P/N 16659 Rev.D 0610141)

8. THE BIO-PLEX SUSPENSION ARRAY PROTOCOL

Parameters of the Protocol should be set as follows:

- 8.1. In section #2."Select Analytes", select the panel "Affymetrix mRNA Bead Panel". If the panel "Affymetrix mRNA Bead Panel" is not in the selection of the drop-down menu, create it and add the mRNAs and their defined region as described in the kit insert. The mRNA ID should be entered as stated below.
- 8.2. Transfer the following mRNA in the "Selected" column: (Please note that the mRNA ID should be typed in Bio-plex exactly as below):

mRNA ID	Bead region	HKG*	Bead region
UL128	56	Hprt1	22
UL130	20	Gapdh	26
UL131	25	Ppib	57
gL	43	*Housekeeping genes	
gH	34	1	
qB	21	1	

8.3. In section #3."Format Plate", format the plate sequence as per Watson's plate sequence.

No:	Date effective:	Supersedes:	Page 6 of 8 pages
AP.5002121.bDNAp.03	Date of AP signature	02-Aug-2017	rage 6 of 6 pages

- 8.4. In section #7."Run Protocol", <u>set the beads at 100 per region</u>. (At least 30 beads should be acquired to consider the reading reliable)
- 8.5. In the "Advanced Settings", set sample size at 100 μ L
- 8.6. The doublet discriminator Gate range setting (DD gates) is set between 5 000 and 25 000.
- 8.7. The reporter PMT is already set as default.

9. EXPORTING DATA TO WATSON LIMS

Notes:

- The assay should first be setup with these settings: Assay Type should be Multi Analyte Plate and the Instrument Type and Instrument Interface should be Bio-Rad Bio-Plex.
- ii. For Watson analysis, Analyte info in Master assay should be set as follow:

	Details (Watson Master Assay settings)	
Reduction type	on type 5PL (Marquardt)	
Analyte Info		
Concentration units	Due to Watson limitations pg/mL will be used instead of fg/µL.	
Weighting Factor	1/Y** ²	
Decimal Places	6	
Regression Type	5PL (Marquart)	

9.1. Export data to Watson LIMS as per SOP CAE-147. Only the data from the mRNAs are to be exported. Data (FI and FI-Bkgd) from the housekeeping genes will be tabulated for information purposes only.

10. THE BIO-PLEX MANAGER PRINTOUT

Notes:

- Due to a known issue with the Bio-Plex software, some of the pages on the Luminex printouts have the following information omitted at the bottom of the page: -1- low bead #. The above omission has no impact upon the integrity of the study.
- ii. At least the first page of each analyte printout should be signed and dated. The pagination of each analyte printout is indicated at the bottom right of each page as "x/y", where "x" denotes the current page number and "y" denotes the total number of pages.
- iii. When the printouts are reprinted, the "signed/by and Document ID" does not appear due to software limitations. Refer to original printouts when this situation occurs.
- 10.1. When preparing the Bio-Plex Manager Protocol, the sample dilution should always be set at 1 regardless of the actual dilution factor. The final concentration will be adjusted in Watson using the appropriate dilution factor.
- 10.2. Once the assay plate has been read, the columns of the Bio-Plex Manager printout should be adjusted as follows prior to printing:

de la						
Туре	Well	FI	FI - Bkgd	Bead Count	Sampling Error	l

10.3. Calculation

The five parameters logistic (5PL Marquardt) model is used to fit the sigmoid calibration curve. A logarithmic sigmoid calibration curve is obtained by plotting the Fluorescence Intensity (FI) against the concentration. Concentrations of analytes in the study samples are determined by computer interpolation from the plot of the calibration curve.

No:	Date effective:	Supersedes:	Page 7 of 8 pages
AP.5002121.bDNAp.03	Date of AP signature	02-Aug-2017	

11.ACCEPTANCE CRITERIA

11.1. Standard curve

- 11.1.1. For all mRNAs: Mean FI Blank < Mean FI LLOQ
- 11.1.2. The standard curve should contain at least six non-zero standards, after removal of rejected standards.
- 11.1.3. Percent nominal calculated using the mean concentrations should be within 75% 125% for all the working standards except for LLOQ and ULOQ which should be within 70% - 130%.
- 11.1.4. A standard that meets the acceptance criteria but tends to bias the standard curve, thus having a negative impact on the overall standard curve or the others working standards, may be partially or fully masked.
- 11.1.5. If the criteria mentioned previously are not met, a standard should be fully or partially removed (i.e. the minimal reprocessing):
 - A maximum of i) two full points, or ii) one full point and two partial points, or iii) three
 partial points may be deleted from a calibration curve. Two adjacent points in the
 curve cannot be deleted.

11.2. Quality controls (QC's)

11.2.1. Percent theoretical is calculated using the mean concentration and should be within 75%-125% for LQC, MQC and HQC samples. The % CV between QC samples duplicate concentrations should be ≤ 25%.

11.3. Run acceptance criteria

- 11.3.1. The curve must meet the acceptance criteria (mentioned in the Standard curve section)
- 11.3.2. At least 67% of the QC samples must meet the acceptance criteria (mentioned in the Quality controls section), with 50% accepted QC samples at each level.
- 11.3.3. With the addition of a "Sampling Error" column on the Luminex printouts certain results may be called into question when errors occur. See the table below for a description of the errors:

Error Code: Indicates:		
1 Low bead number detected in the well		
2 Aggregated beads detected in the well		
3	Bead classification efficiency problem detected in the well	
4 Region selection problem detected in the well		
5	5 Platform temperature problem detected	

- 11.3.4. Errors that can potentially compromise the quality of the data appear in this column (error codes 1, 3 and 4) please refer to the following list:
 - -If one replicate of a blank, a standard or QC has a sampling error, the error can be masked and the value reported as a singlicate.
 - -If both replicates for a standard, QC have sampling errors, the standard, QC is to be rejected.
- 11.3.5. The above list requires that a minimum of 30 beads be read for the result to be considered reliable. Please note that for a low bead error, the error might not be applicable to all analytes. Only the affected analytes will be addressed. Error code 5 (platform temperature problem detected) appears if a variation of ± 2°C occurs during reading. If this happens, impact on the data should be evaluated and documented. If aggregation of the beads occurs causing the error code 2 to appear but does not impede acquisition of a minimum of 30 beads or does not cause bead classification or region selection problems, it will not be considered as causing reliability issues with the obtained results.

11.4. Samples acceptance criteria and reporting

- 11.4.1. The % CV between Study sample replicate concentrations should be ≤ 25%, this does not apply if both replicates are < LLOQ.
- 11.4.2. A Study sample should be repeated if the % CV is not ≤ 25%.
- 11.4.3. Any Study samples with at least one replicate with a concentration > ULOQ should be diluted and re-analyzed. In the event where the Study sample may not be re-analyzed at a higher dilution factor due to dilutional linearity limitation, ">x" (where x is the assay ULOQ concentration multiplied by the dilution factor at which the sample was analyzed) will be reported. "X" (multiplied by the dilution factor) will be used for the calculation of the mean and standard deviation (SD), and will be mentioned in a footnote.
- 11.4.4. If one of the replicates is < LLOQ and the other replicate is > LLOQ, the limit for a replicate to reach 25% CV with the LLOQ will be defined as the threshold. If one of the replicates is < LLOQ and the other replicate is > threshold, the Study sample should be repeated. If the quantifiable replicate is ≤ threshold, the quantifiable result will be reported as the result for the Study sample. Refer to Appendix #1 for the threshold value.
- 11.4.5. Repeats will be performed if sufficient Study sample volume is available.
- 11.4.6. Mean duplicate analysis will be reported if both replicates are quantifiable results.
- 11.4.7. "< Y" (where Y is the assay LLOQ concentration multiplied by the dilution factor at which the sample was analyzed) will be reported for Study samples with concentrations below the LLOQ. The value of the LLOQ should be recorded in the footnote of the report table. "Y/2" will be used for the calculation of the mean and standard deviation (SD) for values for which the measured concentration was <LLOQ, and will be mentioned as a footnote.</p>
- 11.4.8. The final reported value should be the observed concentration multiplied by the dilution factor.
- 11.4.9. Study sample results will be reported to 2 decimal places in ng/mL (or as appropriate).

12. REVISION HISTORY

Version	Effective date of this version	Updates
03	Date of AP signature	 Included information regarding the acquisition and tabulation of the housekeeping genes (Sections 8.1 and 9.2). Included prompt entry for Bio-Plex Suspension Array in Appendix #5.
02	02-Aug-2017	Increased the number of beads to be acquired to 100.
01	01-Aug-2017	N/A

Assay Information Sheet	
Study/reference number: 5002121	Assay ID: bDNAp-
Verified by/date:	
1-Reagents, Materials and Matrix information	

Lot# to be used
MTDP17048 (concentration: 1.9 mg/mL)

2-Standards and QCs information

2.1 Range response (pg/mL)

Cumio mango	Concentration	(pg/mL)
Curve range	UL131, UL128, gH and gL	UL130 and gB
LLOQ	0.10	0.50
ULOQ	50.00	50.00

2.2 Standards and QCs concentration:

The second	Before lysis	After lysis
ID	Concentration (pg/µL) All mRNAs	Concentration (pg/mL) All mRNAs
STD 0	0.00	0.00
STD 1	0.01	0.10
STD 2	0.05	0.50
STD 3	0.25	2.50
STD 4	0.50	5.00
STD 5	0.75	7.50
STD 6	1.25	12.50
STD 7	1.75	17.50
STD 8	2.50	25.00
STD 9	5.00	50.00
LQC-1	0.03	0.30
LQC-2*	0.15	1.50
MQC	1.00	10.00
HQC	4.00	40.00

^{*}For UL130 and gB only.

3-Threshold value

The threshold value for a replicate to reach a limit of 25% CV from LLOQ is 0.143 pg/mL** for all mRNAs except for UL130 and gB which is 0.719 pg/mL.

Appendix #1	(AP.5002	121.bDN	(Ap.03

^{**}Fold dilution not taken into account.

4-Additional information or N/A (

Standards	and	QCs	mRNA	Preparation	on Shee

Study/reference number: 5002121

Assay ID: bDNAp-

Verified by/date:

Reagent ID:	Batch/lot#	Anchem/Inventory ID
mRNA-1647		
Rat plasma		

12 1/23	mRNA Stock		Rat	Preparation	Total	Final calculated mRNA	Target mRNA	
ID	ID	Concentration (pg/µL) All mRNAs	volume (µL)	plasma volume (µL)	Performed (v)	volume (µL)	concentration (pg/µL) All mRNAs	concentrations (pg/µL) All mRNAs
STD stk-1	mRNA-1647	320000.00	5	155	()	160	10000.00	10000.00
STD stk-2	STD stk-1	10000.00	5	495	()	500	100.00	100.00
STD 9	STD stk-2	100.00	7	133	()	140	5.00	5.00
STD 8	STD 9	5.00	55	55	()	110	2.50	2.50
STD 7	STD 8	2.50	70	30	()	100	1.75	1.75
STD 6	STD 7	1.75	60	24	()	84	1.25	1.25
STD 5	STD 6	1.25	48	32	()	80	0.75	0.75
STD 4	STD 5	0.75	40	20	()	60	0.50	0.50
STD 3	STD 4	0.50	25	25	()	50	0.25	0.25
STD 2	STD 3	0.25	10	40	()	50	0.05	0.05
STD 1	STD 2	0.05	10	40	()	50	0.01	0.01
STD 0	N/A	N/A	N/A	30	()	30	0.00	0.00
HQC	STD 9	5.00	40	10	()	50	4.00	4.00
MQC	HQC	4.00	15	45	()	60	1.00	1.00
LQC-2	MQC	1.00	6	34	()	40	0.15	0.15
LQC-1	MQC	1.00	6	194	()	200	0.03	0.03

Required plasma volume (mL):	1.36	
Pipette ID(s):	Laminar flow hood (ID):	
Performed by/date:	Reviewed by/date:	
Appendix #2 (AP.5002121.bDNAp.03)		1 of 1

1	VS	-	0	ь.	_	-	L

Study/reference number: 5002121

Assay ID: bDNAp-

Verified by/date:	
Reagent / Instruments	Batch # / P
Lysis solution	Refer to a
Dinetto(s)	

reagent / instruments	Batch # / Frep. Date / ID
Lysis solution	Refer to appendix 4a.
Pipette(s)	
Laminar flow hood	
Timer	
Temperature controlled shaker	

1. Standards and QCs Lys

ID		Stock		Lysis solution	Lysis	Total volume	Final concentration	
ID.	ID	concentration (pg/µL) All mRNAs	volume (µL)	volume (µL)	performed (√)	(µL)	(pg/mL) All mRNAs	
STD 9L	STD 9	5.00	10	990		1000	50.00	
STD 8L	STD 8	2.50	10	990		1000	25.00	
STD 7L	STD 7	1.75	10	990		1000	17.50	
STD 6L	STD 6	1.25	10	990		1000	12.50	
STD 5L	STD 5	0.75	10	990		1000	7.50	
STD 4L	STD 4	0.50	10	990		1000	5.00	
STD 3L	STD 3	0.25	10	990	1, ,	1000	2.50	
STD 2L	STD 2	0.05	10	990	()	1000	0.50	
STD 1L	STD 1	0.01	10	990	1	1000	0.10	
STD 0L	STD 0	0.00	10	990]	1000	0.00	
HQC-L	HQC	4.00	10	990	1	1000	40.00	
MQC-L	MQC	1.00	10	990	1	1000	10.00	
LQC-2L	LQC-2	0.15	10	990	1	1000	1.50	
LQC-1L	LQC-1	0.03	10	990	1	1000	0.30	
		Descriped value	inna (nal \)	40.0				

Required volume (mL): 13.9

Lysis performed by/date:

2. Study samples Lysis

ID	Stock		Lysis solution	Lysis	Total volume
	ID	volume (µL)	volume (µL)	performed (√)	(µL)
		10	990	()	1000
		10	990	()	1000
	Required	volume (mL):	2.0		

Stock added by/date: _____Lysis solution added by/date: _____

3. Incubation

Step	Time	Performed by/date
Place the test tubes in a temperature controlled shaker	Start time:	
set to maintain 60.0°C, 250 rpm for 60 minutes (± 5 min).	End time:	

Appendix #3 (AP.5002121.bDNAp.03)

Study/reference number: 5002121 4. Storage	Lysis Sheet	Assay ID: bDNA
Step	Time / Performed (√)	Performed by/date
Store the lysate samples <u>F</u> after use.	Freezer ID:	
Reviewed by/date:		

Reagent lot#			The state of the s	Entered by/date
		Start:	End:	
	20:11			
	Volur	ne (µL)	Performed	(4)
Lysis Mixture		980		
Nuclease-free water Proteinase K		15522 498		
quired volume (mL)		24		
	Volur	ne (µL)	Performed	(1/)
	8	58		
Nuclease-free water				1
Blocking Reagent			()	
Proteinase K				
2.0 Mag Capture Beads (Panel 31377) 2.0 Probe Set (Panel 31377)		17.5%		
SOUTH STREET,	2.	.60	130 w	vells ^a
SECURE CONSTRUCTOR	Lauria au flann be a d 17		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Laminar flow nood it):	Incubator ID:	
	guired volume (mL) 81377) 7) quired volume (mL) % overage.	Volume (mL) Volume (mL) Volume (mL) Volume (mL) 31377) 1 7) 6 quired volume (mL) 2 % overage.	Volume (μL) 7980 15522 498 498	Volume (µL) Performed

Appendix #4a (AP.5002121.bDNAp.03)

Reagent	lot#		Invento	ory ID	Entered by/date	
Nuclease-free water						
Wash buffer component 1					1	
Wash buffer component 2						
SAPE					1	
SAPE Diluent						
		75				
ash buffer 1X (WB-bDNA) Reagent		Volume (mL)		Performed (√)	W. W. W.	
Nuclease-free water		189				
Wash buffer component 1		0.6		()		
Wash buffer component 2		10				
Required	volume	199.6	(mL)			
orking SAPE solution (wSAPE)			'			
Reagent		Volume (µL)		Performed (√)		
SAPE		36		()		
SAPE Diluent		12000		()		
Required	volume	12	(mL)			
tte ID(s):	Laminar flow	hood ID:			×	
ormed by/date:	Reviewed b	y/date:				

Verified by/date:		
	/instruments/material used on Day 1	
Name	Lot / batch / ID	Entered by/date
QuantiGene® Plex Assay kit (RT storage)	Lot:	
Quantificenes Plex Assay Kit (KT storage)	Inventory:	
Working Bead Mix (wBM-)	Refer to appendix #4a.	
Pipette(s) and/or Multi channel pipette(s)	,,	1
Laminar flow hood		-
Incubator		-
Timer		1
Lysed samples amb	ient RT stability tracking or N/A ()	
	Performed (√) / Time	Entered by/date
Lysed samples thawed at RT.	Time:	
100 - 10 - 10 - 10 - 10 - 10 - 10 - 10	Start Time:	
When thawed, incubate in an incubator set to maintain 37°C for 30 minutes (± 2 minutes).		
	End time:	
Keep lysed samples at RT until use.	. ()	
Lysed samples returned to storage.	Time:	
Reagents/solut	tions/instruments used on Day 2	
Name	Lot / batch / ID	Entered by/date
QuantiGene® Plex Assay kit (RT and RF storage)	Lot: Inventory (RT storage):	
	Inventory (RF storage):	
Wash buffer 1X (WB-bDNA)	Refer to appendix #4b.	
Pre-Amplifier Solution	Lot:	
Amplifier Solution	Lot:	
Label Probe Solution	Lot:	
Working SAPE solution (wSAPE)	Refer to appendix #4b.	
SAPE Wash buffer	Lot:	
Laminar flow hood		1
Plate shaker		
Incubator		3.50
Centrifuge		
		141
Bio-Plex Suspension Array		
Bio-Plex Suspension Array Pipette(s) and/or Multi channel pipette(s)		

bDNA Assay Sheet

Study/reference number: 5002121

	1	2	3	ding plat	5	6	7	8	9	10	11	12
4	STD OL	STD 4L	STD 8L	MQC-L	11-19			E				LQC-1L
3	STD 0L	STD 4L	STD 8L	MQC-L								LQC-1L
	STD 1L	STD 5L	STD 9L	HQC-L					100			LQC-2L
)	STD 1L	STD 5L	STD 9L	HQC-L								LQC-2L
	STD 2L	STD 6L	LQC-1L									MQC-L
	STD 2L	STD 6L	LQC-1L									MQC-L
	STD 3L	STD 7L	LQC-2L								200	HQC-L
ı	STD 3L	STD 7L	LQC-2L									HQC-L

	Pre-loading and loading plate sequence assay ID:											
	1	2	3	4	5	6	7	8	9	10	11	12
Α	STD OL	STD 4L	STD 8L	MQC-L								LQC-1L
В	STD 0L	STD 4L	STD 8L	MQC-L								LQC-1L
С	STD 1L	STD 5L	STD 9L	HQC-L	18 018							LQC-2L
D	STD 1L	STD 5L	STD 9L	HQC-L								LQC-2L
E	STD 2L	STD 6L	LQC-1L		6763							MQC-L
F	STD 2L	STD 6L	LQC-1L									MQC-L
G	STD 3L	STD 7L	LQC-2L								A B	HQC-L
н	STD 3L	STD 7L	LQC-2L									HQC-L

a = Only the shaded columns are used for the pre-loading plate sequence (in singlicate).

Reviewed by/date:	
Appendix #5 (AP 5002121 bDNAp 03)	

bDNA Assay Sheet

Study/reference	number	E002424

	Assay ID:	Assay ID:
Steps	Time / Performed by	Time / Performed by
DAY 1		3.0
Pre-load: Referring to the pre-loading plate sequence, add the appropriate volume of test material* in singlicate into the appropriate wells of a pre-loading plate.	s ()	()
/ortex briefly the wBM and add 20 μL/well to the Hybridization Plate.	()	()
Load: Referring to the loading plate sequence, transfer 80 µL of each test material* from the pre-loading plate to the appropriate wells of the Hybridization Plate .	()	()
Seal the Hybridization Plate with a pressure seal and incubate overnight between 18 and 22 hours) in an incubator set to maintain 54°C set at 800 rpm.	Start:	Start:
All required steps were performed under a laminar flow hood and the solutions were brought to RT before use.	()	()
DAY 2		
Pre-warm Pre-Amplifier, Amplifier and Label solutions in an incubator set	(art:)
o maintain 37°C for at least 30 minutes. Bring SAPE Diluent to RT.	Fin (ish:)
Remove the Hybridization Plate from the incubator and centrifuge set at 240 x g for 1 minute at RT.	Finish:	Finish:
Transfer all well contents to a Magnetic Separation Plate.	()	()
Nash: Wash the plate three times as per AP with 100μL of Wash buffer	1st: () 2nd: () 3rd: ()	1st: () 2nd: () 3rd: ()
Preamplification: Add 100 μL/well of Pre-Amplifier solution and seal the plate with a foil seal. Incubate in an incubator set to maintain 50°C seat 600 rpm for 60 minutes (± 2 min).	Start: () t Finish: ()	Start: () Finish: ()
Wash: Wash the plate three times as per AP with 100µL of Wash buffer	1st: () 2nd: () 3rd: ()	1st: () 2nd: () 3rd: ()
Includes Standards, QCs and Study samples.		
Comment(s):		
1) Performed by/date: 3) Performe	d by/date:	
7) Tenermed by date.		

Test Facility Study No. 5002121

bDNA Assay Sheet

Study

	Assay ID:	Assay ID:
Steps	Time / Performed by	Time / Performed by
Amplification: Add 100 μL/well of Amplifier solution and seal the plate with a foil seal. Incubate in an incubator set to maintain 50°C set at 600 rpm for 60 minutes (± 2 min).	Start: () Finish: ()	Start: () Finish: ()
Wash: Wash the plate three times as per AP with 100µL of Wash buffer.	1st: () 2nd: () 3rd: ()	1st: () 2nd: () 3rd: ()
Labelling: Add 100 μL/well of Label Probe solution and seal the plate with a foil seal. Incubate in an incubator set to maintain 50°C set at 600 rpm for 60 minutes (± 2 min).	Start: () Finish: ()	Start: () Finish: ()
Wash: Wash the plate three times as per AP with 100µL of Wash buffer.	1st: () 2nd: () 3rd: ()	1st: () 2nd: () 3rd: ()
Binding: Add 100 µL/well of Working SAPE solution and seal the plate with a foil seal. Incubate at RT on a plate shaker set at 600 rpm for 30 minutes (± 1 min).	Start: () Finish: ()	Start: () Finish: ()
Wash: Wash the plate three times as per AP with 100μL of <u>SAPE</u> Wash buffer.	1st: () 2nd: () 3rd: ()	1st: () 2nd: () 3rd: ()
Add 130 µL/well of SAPE Wash buffer and place the plate on a plate shaker at RT set at 600 rpm for at least 3 minutes.	Start: () Finish: ()	Start: () Finish: ()
Perform a "Prime" function before each plate reading.	()	()
Read the plate on the Bio-Plex Suspension array.	()	()
Perform a "Wash between plate" after a plate has been read.	() or N/A ()	() or N/A ()
When applicable, all required steps were performed under a laminar flow hood and the solutions were brought to RT and protected from light before use.	()	()
Comment(s):		
1) Performed by/date: 3) Pe	rformed by/date:	

bDNA Assay Sheet

Study/	refer	ence	numi	ber:	5002	121

				Data	Review	<u> </u>						
Assay acceptance	Assay ID:				Assay ID:							
Criteria	UL128	UL130	UL131	gL	gH	gB	UL128	UL130	UL131	gL	gH	gB
	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Blank < LLOQ	or	or	or	or	or	or	or	or	or	or	or	or
	No	No	No	No	No	No	No	No	No	No	No	No
Number of working STDs*	1	1	1	1	1	1	1	1	1	1	1	1
Number of LQCs**	1	1	1	1	1	1	1	1	T.	1	1	1
Number of MQCs**	1	1	1	1	1	1	1	1	1	1	1	1
Number of HQCs**	1	1	1	1	1	1	1	1	1	1	1	1
Total number of QCs meeting acceptance criteria.	1	1	1	1	1	1	1	1	1	7	1	1
Entered by/date:												

^{*} with a % theoretical within 75% - 125% and within 70% - 130% for LLOQ and ULOQ. In addition, ≥ 30 beads acquired for at least one replicate.

^{**}with a % theoretical within 75% to125% and % CV between replicate values ≤ 25%. In addition, ≥ 30 beads acquired for

			8	Scienti	fic Revi	ew						
	Assay ID:				Assay ID:							
THE PERSON NAMED IN	UL128	UL130	UL131	gL	gH	gB	UL128	UL130	UL131	gL	gH	gB
	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Assay is acceptable:	or	or	or	or	or	or	or	or	or	or	or	or
	No	No	No	No	No	No	No	No	No	No	No	No
	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Number of beads ≥ 30	or	or	or	or	or	or	or	or	or	or	or	or
	No	No	No	No	No	No	No	No	No	No	No	No
	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	or	or	or	or	or	or	or	or	or	or	or	or
Study samples to repeat:	No	No	No	No	No	No	No	No	No	No	No	No
	or	or	or	or	or	or	or	or	or	or	or	or
	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Entered by/date	12						_					

Reviewed by/date:	
Appendix #5 (AP.5002121.bDNAp.03)	

Comment(s):

R	Reagent		Lot#			Inventory #	ŧ
Rat plasma							
Lys	sis solution		Refer to appendix #4a				
		Stock		Dile	uent		
Sample ID	Dilution fold	ID	Volume (μL)	Rat plasma Volume (µL)	Lysis solution	Dilution prepared	Total volume (µL)
						()	
						()	
						()	
						()	
						()	
						()	
						()	
						()	
						()	
						()	
						()	
						()	
						, ()	
						()	
						()	
						()	
					-	()	
					-	()	
						()	
		Required	volume (mL):	0	0]	
Pipette ID(s	s):		L	aminar flo	w hood ID:		
Stock ad	ded by/date:						
				Peview	ed by/date		

Appendix 3 AP.5002121.bDNAt.03

ANALYTICAL PROCEDURE

Title: A MULTIPLEXING BRANCHED DNA (bDNA) METHOD FOR THE QUANTITATIVE DETECTION	AP Number: AP.5002121.bDNAt.03	Effective Date: Date of AP signature
OF MRNA IN RAT TISSUE BY LUMINEX	Page 1 of 8 pages	Supersedes: 02-Aug-2017
Approved by: (b) (6) Senior Research Scientist I, Immunology	(6)	Date: 03 Aug 2017
Authorized by: (b) (6) Associate Scientific Director, Immunology) (0)	Date: 07Am 2017

1. PURPOSE

To describe a multiplexing bDNA method for the quantitation of mRNA (UL128, UL130, UL131, gL, gH and gB) in rat tissue.

2. SCOPE

This analytical procedure applies to all personnel performing activities related to this method.

3. RESPONSIBILITY

All staff performing this assay are responsible for compliance with this analytical procedure.

4. REQUIRED FORM

Appendices should be verified by a Scientist prior to use.

Appendix #1 Assay Information Sheet (example of a document)

Appendix #2 Standards and QCs mRNA Preparation Sheet (example of a spreadsheet)

Appendix #3 Lysis Sheet (example of a document)

Appendix #4a Solution Preparation Sheet - Day 1 (example of a spreadsheet)

Appendix #4b Solution Preparation Sheet - Day 2 (example of a spreadsheet)

Appendix #5 bDNA Assay Sheet (example of a document)

Appendix #6 Study Sample Dilution Sheet (example of a spreadsheet)

5. MATERIALS/EQUIPMENT/REAGENT

Notes:

- i. Materials can be substituted provided the same specifications are met.
- ii. The procedure may require other general laboratory supplies commonly used in the Immunology laboratory.

5.1. Materials/Equipment

- 96-well plate (pre-loading)
- Absorbent paper
- Foil plate sealers
- RNase wipes, Life Technologies, cat#: AM9786M
- Sterile reagent reservoirs
- Parafilm
- DNAse and RNAse free tubes (polypropylene, various caps, various sizes)
- Laboratory timer
- Pipettes (multi-channel, micro, repeater)
- Pipette tips and/or Eppendorf combitips with filter (various sizes)
- Centrifuge
- Controlled temperature shaker (set to maintain 60°C)
- Incubator (set to maintain 37°C)

No: AP.5002121.bDNAt.03	Date effective: Date of AP signature	Supersedes: 02-Aug-2017	Page 2 of 8 pages
----------------------------	---	-------------------------	-------------------

- Shaking Incubator (set to maintain 54°C and 50°C)
- Laminar flow hood
- Bio-Plex Suspension Array
- Bio-Plex Manager™ Software
- Watson LIMS version 7.4.2 SP1 (or latest available version)
- Vortex mixer
- Plate shaker
- Hand-held magnetic washer

5.2. QuantiGene® Plex Assay kit

Affymetrix; cat#: QP1015; Lot #: refer to Appendix #1. Store as indicated below. Expiry date: as per manufacturer.

Note that when possible, the same kit lot number should be used for the entire study to reduce any potential assay variability due to change of reagent lots. Any new kit lot should be qualified prior to use. Quality Controls (QCs), LLOQ and ULOQ should be assessed at least n=3. The qualification of the new lot should meet the run acceptance criteria (acceptance criteria for LLOQ and ULOQ will be the same as the QCs). When these criteria are met the new kit lot is considered qualified. In the event where the same lot of kit cannot be used throughout the study and lot to lot variability is present, this should be considered in the interpretation of the results.

Kit components:

Component ID	Quantity	Storage
Proteinase K		F
Blocking Reagent		 If required, aliquots (appropriate volumes) can be prepare on the first use.
Label Probe Solution		
Pre-Amplifier Solution		
Amplifier Solution		RF
SAPE		
SAPE Diluent		
Lysis Mixture		
Wash Buffer Component 1		
Wash Buffer Component 2		
SAPE Wash Buffer		
Magnetic Separation Plate(s)		RT
Plate seals		
Hybridization Plate(s)		
Pressure Seals		

5.3. QuantiGene Sample Processing Kit (Tissue samples)

Affymetrix; cat#: QS0106; Lot #: refer to appendix #1. Store as indicated below. Expiry date: as per manufacturer.

Kit components:

Component ID	Quantity	Storage
Homogenizing solution	75 mL	RT
Proteinase K	360 µL	F

No:	Date effective:	Supersedes:	Page 3 of 8 pages
AP.5002121.bDNAt.03	Date of AP signature	02-Aug-2017	

5.4. Other reagents

- Nuclease free water, Life Technologies, cat#: AM9932 (or 4387936)
- 2.0 Probe Set (Panel 31377) (UL128, UL130, UL131, gL, gH and gB): Sponsor or Affymetrix, cat# QGP-210-M17051201, stored F.
- 2.0 Mag Capture Beads (Panel 31377) (uL128, uL130, uL131, gL, gH and gB): Sponsor or Affymetrix cat# QGP-210-M17051201, stored RF.
- mRNA-1647 (proportions are 1:1:1:1:1:1):
 Sponsor, lot: MTDP17048 (1.9 mg/mL), storage F.

6. PREPARATION OF ASSAY SOLUTIONS, STANDARDS, QUALITY CONTROLS (QCs) AND STUDY SAMPLES

Notes:

- Volumes described for any preparation may be scaled up or down proportionally as long as the target concentration is not changed. All changes must be documented in the raw data.
- ii. If the lot # of a reagent is recorded, the recording of the inventory # is not critical, since it is considered to be for information or reference purposes only. The only situation that would make the inventory # critical is for reagents that have an expiry date based on the receipt date.
- iii. Bring all reagents to RT before use.
- iv. All preparations should be performed under a laminar flow hood.

6.1. Lysis solution (code: LS)

- Pre-warm the Lysis mixture in an incubator set to maintain 37°C for 30 minutes prior to use.
- Referring to Appendix #4a, add 15 960 µL of Lysis mixture, 31 044 µL of Nuclease-free water and 996 µL of Proteinase K (50 U/µL) to an appropriate container (for a total volume of 48 mL).
- Invert to mix.
- Keep at RT until use.
- Expiry: To be used on the day of preparation.

6.2. Homogenizing working solution (code: HWS)

- Referring to appendix #4a, add 50 µL of Proteinase K to 5 mL of Homogenizing solution.
- Mix
- Keep at RT until use.
- Expiry: To be used on the day of preparation.

6.3. <u>Standards and Quality Control (QC) samples in Homogenizing working solution Concentration: Refer to Appendix #1</u>

- Referring to Appendix #2, add the appropriate volume of the appropriate Standard or QC to the appropriate volume of Homogenizing working solution.
- Mix
- Expiry: To be used on the day of preparation.
- Lysed Standards and QCs may be discarded after use however Study samples lysates should be stored F. Expiry: SIP.

6.4. Study samples diluted in Homogenizing working solution or Lysis solution

- Referring to Appendix #6, add the appropriate volume of the appropriate Study sample to the appropriate volume of Homogenizing working solution or Lysis solution.
- Mix
- Expiry: To be used on the day of preparation.

No: Date eff AP.5002121.bDNAt.03 Date of AP		Page 4 of 8 pages
--	--	-------------------

6.5. Lysed Standards, QCs and Study sample(s)

- Referring to Appendix #3, add the appropriate volume of Standards, QCs and Study sample(s) to the appropriate volume of Lysis solution (LS).
- Mix
- Incubate as per Appendix #3.
- Lysed Standards and QCs may be discarded after use however Study samples lysates should be stored F. Expiry: SIP.

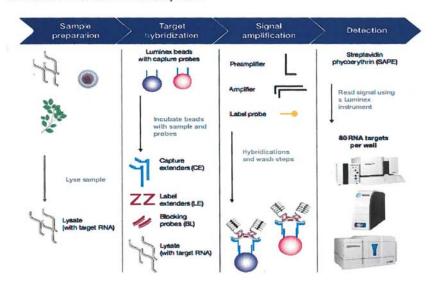
6.6. Working Bead Mix (code: wBM)

- Referring to Appendix #4a, add 697 μL of Nuclease-free water, 884 μL of Lysis mixture, 268 μL
 of Blocking reagent, 27 μL of Proteinase K, 134 μL of Capture Beads (vortex 30 seconds prior
 to adding) and 670 μL of the appropriate Probe set to an appropriate container.
- Mix
- Keep at RT until use.
- Expiry: To be used on the day of preparation.

6.7. Wash Buffer 1X (code WB-bDNA)

- Referring to Appendix #4b, add 189 mL of Nuclease-free water, 0.6 mL of Wash buffer component 1, 10.0 mL of Wash buffer component 2 to an appropriate container.
- Mix
- Keep at RT until use.
- Expiry: To be used on the day of preparation.

6.8. Working SAPE solution (code wSAPE)


- Referring to Appendix #4b, combine 36 µL of SAPE (previously vortexed and briefly centrifuged) and 12 mL of SAPE Diluent into an appropriate container.
- Vortex 15 seconds and protect from light.
- Keep at RT until use.
- Expiry: To be used on the day of preparation.

7. ASSAY PROCEDURE

- 7.1. On Day 1, all steps should be performed under a laminar flow hood with the exception of the centrifugation and incubation steps. On Day 2, only the solution preparations should be performed under the laminar flow hood.
- 7.2. All solutions should be kept at RT prior to use.
- 7.3. Standards, QC samples and Study samples should be analyzed on the same plate. The Standards, QCs and Study samples will be analyzed in duplicates.
- 7.4. Study samples should be analyzed in batches so that the same time point will be represented in a single assay unless otherwise stated in advance prior to analysis. This will not be applicable to repeat analysis.
- 7.5. The sample MRD is 1/100.
- 7.6. A multi-channel pipette may be used for the washing steps even if its verification has expired.

No: AP.5002121.bDNAt.03	Date effective: Date of AP signature	Supersedes: 02-Aug-2017	Page 5 of 8 pages
----------------------------	---	-------------------------	-------------------

- 7.7. Procedure to empty the wells with a hand-held magnetic washer:
 - Place the plate in a hand-held magnetic washer and wait 1 minute to appropriately trap the beads at the bottom of the wells.
 - Flick the plate to empty the wells, and then blot gently on absorbent paper.
 - Add 100 µL of the appropriate solution to each well and wait another minute.
 - Flick the plate to empty the wells, and then blot gently on absorbent paper.
 - Repeat wash step twice.
 - Keep the plate in the hand-held magnetic washer while adding the Pre-Amplification, Amplication, Label Probe and the Working SAPE solutions. Remove prior to the incubations.
- 7.8. Refer to Appendix #5 for the Assay procedure.
- 7.9. If the reading of the plate needs to be stopped due to a reading malfunction, repeat the last wash step, add 100 µL of SAPE Wash buffer and empty the wells. Add 130 µL of SAPE Wash buffer in all wells of the assay plate. Incubate the plate at RT protected from light on a plate shaker set at 600 rpm for at least 3 minutes and re-read the entire plate. This should be documented in the raw data.
- 7.10. Before reading the plate, a prime function must be run.
- 7.11. If more than one plate is read, a wash between plate function must be performed between plates.
- 7.12. Scheme of QuantiGene Plex Assay Basics1

¹Reference: Affymetrix QuantiGene® Plex Assay User Manual (P/N 16659 Rev.D 0610141)

8. THE BIO-PLEX SUSPENSION ARRAY PROTOCOL

Parameters of the Protocol should be set as follows:

8.1. In section #2."Select Analytes", select the panel "Affymetrix mRNA Bead Panel". If the panel "Affymetrix mRNA Bead Panel" is not in the selection of the drop-down menu, create it and add the

No: Date effective: Supersedes: Page 6 of 8 pages AP.5002121.bDNAt.03 Date of AP signature 02-Aug-2017 Page 6 of 8 pages

mRNAs and their defined region as described in the kit insert. The mRNA ID should be entered as stated below.

8.2. Transfer the following mRNA in the "Selected" column:

(Please note that the mRNA ID should be typed in Bio-plex exactly as below):

mRNA ID	Bead region	HKG*	Bead region
UL128	56	Hprt1	22
UL130	20	Gapdh	26
UL131	25	Ppib	57
gL	43	*Housekeepin	g genes
gH	34	1	
gB	21	1	

- 8.3. In section #3."Format Plate", format the plate sequence as per Watson's plate sequence.
- 8.4. In section #7."Run Protocol", <u>set the beads at 100 per region</u>. (At least 30 beads should be acquired to consider the reading reliable)
- 8.5. In the "Advanced Settings", set sample size at 100 μL .
- 8.6. The doublet discriminator Gate range setting (DD gates) is set between 5 000 and 25 000.
- 8.7. The reporter PMT is already set as default.

9. EXPORTING DATA TO WATSON LIMS

Notes

- The assay should first be setup with these settings: Assay Type should be Multi Analyte Plate and the Instrument Type and Instrument Interface should be Bio-Rad Bio-Plex.
- ii. For Watson analysis, Analyte info in Master assay should be set as follow:

	Details (Watson Master Assay settings)	
Reduction type	5PL (Marquardt)	
Analyte Info		
Concentration units Due to Watson limitations pg/mL will be used instead of fg/µL.		
Weighting Factor	1/Y** ²	
Decimal Places	6	
Regression Type	5PL (Marquart)	

9.1. Export data to Watson LIMS as per SOP CAE-147. Only the data from the mRNAs are to be exported. Data (FI and FI-Bkgd) from the housekeeping genes will be tabulated for information purposes only.

10.THE BIO-PLEX MANAGER PRINTOUT

Notes

- Due to a known issue with the Bio-Plex software, some of the pages on the Luminex printouts have the following information omitted at the bottom of the page: -1- low bead #. The above omission has no impact upon the integrity of the study.
- ii. At least the first page of each analyte printout should be signed and dated. The pagination of each analyte printout is indicated at the bottom right of each page as "x/y", where "x" denotes the current page number and "y" denotes the total number of pages.
- iii. When the printouts are reprinted, the "signed/by and Document ID" does not appear due to software limitations. Refer to original printouts when this situation occurs.

No: Date effective: Supersedes: O2-Aug-2017 Page 7 of 8 pages	
---	--

- 10.1. When preparing the Bio-Plex Manager Protocol, the sample dilution should always be set at 1 regardless of the actual dilution factor. The final concentration will be adjusted in Watson using the appropriate dilution factor.
- 10.2. Once the assay plate has been read, the columns of the Bio-Plex Manager printout should be adjusted as follows prior to printing:

Type	Well	FI	FI - Bkgd	Bead Count	Sampling Error

10.3. Calculation

The five parameters logistic (5PL Marquardt) model is used to fit the sigmoid calibration curve. A logarithmic sigmoid calibration curve is obtained by plotting the Fluorescence Intensity (FI) against the concentration. Concentrations of analytes in the study samples are determined by computer interpolation from the plot of the calibration curve.

11. ACCEPTANCE CRITERIA

11.1. Standard curve

- 11.1.1. For all mRNAs: Mean FI Blank < Mean FI LLOQ
- 11.1.2. The standard curve should contain at least six non-zero standards, after removal of rejected standards.
- 11.1.3. Percent nominal calculated using the mean concentrations should be within 75% 125% for all the working standards except for LLOQ and ULOQ which should be within 70% - 130%.
- 11.1.4. A standard that meets the acceptance criteria but tends to bias the standard curve, thus having a negative impact on the overall standard curve or the others working standards, may be partially or fully masked.
- 11.1.5. If the criteria mentioned previously are not met, a standard should be fully or partially removed (i.e. the minimal reprocessing):
 - A maximum of i) two full points, or ii) one full point and two partial points, or iii) three
 partial points may be deleted from a calibration curve. Two adjacent points in the
 curve cannot be deleted.

11.2. Quality controls (QC's)

11.2.1. Percent theoretical is calculated using the mean concentration and should be within 75%-125% for LQC, MQC and HQC samples. The % CV between QC samples duplicate concentrations should be ≤ 25%.

11.3. Run acceptance criteria

- 11.3.1. The curve must meet the acceptance criteria (mentioned in the Standard curve section).
- 11.3.2. At least 67% of the QC samples must meet the acceptance criteria (mentioned in the Quality controls section), with 50% accepted QC samples at each level.
- 11.3.3. With the addition of a "Sampling Error" column on the Luminex printouts certain results may be called into question when errors occur. See the table below for a description of the errors:

Error Code:	Indicates:		
1	Low bead number detected in the well		
2	Aggregated beads detected in the well		
. 3	Bead classification efficiency problem detected in the well		
4	Region selection problem detected in the well		
5	Platform temperature problem detected		

- 11.3.4. Errors that can potentially compromise the quality of the data appear in this column (error codes 1, 3 and 4) please refer to the following list:
 - -If one replicate of a blank, a standard or QC has a sampling error, the error can be masked and the value reported as a singlicate.

⁻If both replicates for a standard, QC have sampling errors, the standard, QC is to be rejected

11.3.5. The above list requires that a minimum of 30 beads be read for the result to be considered reliable. Please note that for a low bead error, the error might not be applicable to all analytes. Only the affected analytes will be addressed. Error code 5 (platform temperature problem detected) appears if a variation of ± 2°C occurs during reading. If this happens, impact on the data should be evaluated and documented. If aggregation of the beads occurs causing the error code 2 to appear but does not impede acquisition of a minimum of 30 beads or does not cause bead classification or region selection problems, it will not be considered as causing reliability issues with the obtained results.

11.4. Samples acceptance criteria and reporting

- 11.4.1. The % CV between Study sample replicate concentrations should be ≤ 25%, this does not apply if both replicates are < LLOQ.</p>
- 11.4.2. A Study sample should be repeated if the % CV is not ≤ 25%.
- 11.4.3. Any Study samples with at least one replicate with a concentration > ULOQ should be diluted and re-analyzed. In the event where the Study sample may not be re-analyzed at a higher dilution factor due to dilutional linearity limitation, ">x" (where x is the assay ULOQ concentration multiplied by the dilution factor at which the sample was analyzed) will be reported. "X" (multiplied by the dilution factor) will be used for the calculation of the mean and standard deviation (SD), and will be mentioned in a footnote.
- 11.4.4. If one of the replicates is < LLOQ and the other replicate is > LLOQ, the limit for a replicate to reach 25% CV with the LLOQ will be defined as the threshold. If one of the replicates is < LLOQ and the other replicate is > threshold, the Study sample should be repeated. If the quantifiable replicate is ≤ threshold, the quantifiable result will be reported as the result for the Study sample. Refer to Appendix #1 for the threshold value.
- 11.4.5. Repeats will be performed if sufficient Study sample volume is available.
- 11.4.6. Mean duplicate analysis will be reported if both replicates are quantifiable results.
- 11.4.7. "< Y" (where Y is the assay LLOQ concentration multiplied by the dilution factor at which the sample was analyzed) will be reported for Study samples with concentrations below the LLOQ. The value of the LLOQ should be recorded in the footnote of the report table. "Y/2" will be used for the calculation of the mean and standard deviation (SD) for values for which the measured concentration was <LLOQ, and will be mentioned as a footnote.</p>
- 11.4.8. The final reported value should be the observed concentration multiplied by the dilution factor.
- 11.4.9. Study sample results will be reported to 2 decimal places in pg/mL (or as appropriate).

12. REVISION HISTORY

Version	Effective date of this version	Updates
03	Date of AP signature	 Included information regarding the acquisition and tabulation of the housekeeping genes (Sections 8.1 and 9.2). Included prompt entry for Bio-Plex Suspension Array in Appendix #5.
02	02-Aug-2017	 Increased the number of beads to be acquired to 100.
. 01	01-Aug-2017	N/A

Assay ID: bDNAt-

1-Reagents, Materials and Matrix information

ID	Lot# to be used
mRNA-1647	MTDP17048 (concentration: 1.9 mg/mL)
QuantiGene®Plex Assay kit	
2.0 Probe Set (Panel 31377)	
2.0 Mag Capture Beads (Panel 31377)	

2-Standards and QCs information

2.1 Range response (pg/mL)

~	Concentration (pg/mL)			
Curve range	UL131, UL128, gH and gL	UL130 and gB		
LLOQ	0.10	0.50		
ULOQ	50.00	50.00		

2.2 Standards and QCs concentration:

Before lysis		After lysis
ID	Concentration (pg/µL) All mRNAs	Concentration (pg/mL) All mRNAs
STD 0	0.00	0.00
STD 1	0.01	0.10
STD 2	0.05	0.50
STD 3	0.25	2.50
STD 4	0.50	5.00
STD 5	0.75	7.50
STD 6	1.25	12.50
STD 7	1.75	17.50
STD 8	2.50	25.00
STD 9	5.00	50.00
LQC-1	0.03	0.30
LQC-2*	0.15	1.50
MQC	1.00	10.00
HQC	4.00	40.00

*For UL130 and gB only.

3-Threshold value

The threshold value for a replicate to reach a limit of 25% CV from LLOQ is 0.143 pg/mL** for all mRNAs except for UL130 and gB which is 0.719 pg/mL.

4-Additional information or N/A (____)

Appendix #1 (AP.5002121.bDNAt.03)

^{**}Fold dilution not taken into account.

Standarde	and QCs mRNA Preparation She	ot.
Stariuarus	and GCS minny Freparation one	30

Study/reference number: 5002121

Assay ID: bDNAt-

Verified by/date: ______

Reagent ID: Batch/lot# Anchem/Inventory ID

mRNA-1647
Homogenizing working solution (HWS) Refer to Appendix #4a

	1	mRNA Stock		HWS	Preparation	Total	Final calculated mRNA	Target mRNA
ID			concentration (pg/µL) All mRNAs	concentrations (pg/µL) All mRNAs				
STD stk-1	mRNA-1647	320000.00	5	155	()	160	10000.00	10000.00
STD stk-2	STD stk-1	10000.00	5	495		500	100.00	100.00
STD 9	STD stk-2	100.00	7	133	()	140	5.00	5.00
STD 8	STD 9	5.00	55	55	()	110	2.50	2.50
STD 7	STD 8	2.50	70	30	()	100	1.75	1.75
STD 6	STD 7	1.75	60	24	()	84	1.25	1.25
STD 5	STD 6	1.25	48	32	()	80	0.75	0.75
STD 4	STD 5	0.75	40	20	()	60	0.50	0.50
STD 3	STD 4	0.50	25	25	()	50	0.25	0.25
STD 2	STD 3	0.25	10	40	()	50	0.05	0.05
STD 1	STD 2	0.05	10	40	()	50	0.01	0.01
STD 0	N/A	N/A	N/A	30	()	30	0.00	0.00
HQC	STD 9	5.00	40	10	()	50	4.00	4.00
MQC	HQC	4.00	15	45	()	60	1.00	1.00
LQC-2	MQC	1.00	6	34	()	40	0.15	0.15
LQC-1	MQC	1.00	6	194	()	200	0.03	0.03

Required plasma volume (mL):	1.36	
Pipette ID(s):	Laminar flow hood (ID):	
Performed by/date:	Reviewed by/date:	
Appendix #2 (AP.5002121.bDNAt.03)		1 of 1

	Lysis Sheet
Study/reference number: 5002121	Assay ID: bDNA
Verified by/date:	
Reagent / Instruments	Batch # / Prep. Date / ID
Lysis solution	Refer to appendix 4a.

Reagent / Instruments	Batch # / Prep. Date / ID
Lysis solution	Refer to appendix 4a.
Pipette(s)	
Laminar flow hood	
Timer	
Temperature controlled shaker	

1. Standards and QCs Lys

15	Stock		Lysis solution	Lysis	Total volume	Final concentration	
ID	HD	concentration (pg/µL) All mRNAs	volume (µL)	volume (µL)	performed (v)	(µL)	(pg/mL) All mRNAs
STD 9L	STD 9	5.00	10	990		1000	50.00
STD 8L	STD 8	2.50	10	990		1000	25.00
STD 7L	STD 7	1.75	10	990		1000	17.50
STD 6L	STD 6	1.25	10	990		1000	12.50
STD 5L	STD 5	0.75	10	990		1000	7.50
STD 4L	STD 4	0.50	10	990		1000	5.00
STD 3L	STD 3	0.25	10	990	, ,	1000	2.50
STD 2L	STD 2	0.05	10	990	()	1000	0.50
STD 1L	STD 1	0.01	10	990		1000	0.10
STD 0L	STD 0	0.00	10	990		1000	0.00
HQC-L	HQC	4.00	10	990		1000	40.00
MQC-L	MQC	1.00	10	990	1	1000	10.00
LQC-2L	LQC-2	0.15	10	990	1	1000	1.50
LQC-1L	LQC-1	0.03	10	990		1000	0.30
		Peguired volu	ima (ml):	12.0			

Required volume (mL): 13.9

Lysis performed by/date:

2. Study samples Lysis

1D	Stock		Lysis solution	Lysis	Total volume
	łD	volume (μL)	volume (µL)	performed (√)	(µL)
		10	990	/ \	1000
		10	990	()	1000
	Required	volume (mL):	2.0		

Stock added by/date: _____Lysis solution added by/date: _____

3. Incubation

Step	Time	Performed by/date
Place the test tubes in a temperature controlled shaker	Start time:	
set to maintain 60.0°C, 250 rpm for 60 minutes (± 5 min).	End time:	

Appendix #3 (AP.5002121.bDNAt.03)

Study/reference number: <u>5002121</u> 4. Storage	Assay ID: bDN	
Step	Time / Performed (√)	Performed by/date
Store the lysate samples $\underline{m{F}}$ after use.	Freezer ID:	
Reviewed by/date:		

Reagent	lot#	Inventory ID		an incubator set to or at least 30 minutes.	Entered by/date
Lysis Mixture			Start:	End:	
Nuclease-free water					
Proteinase K				A service of the service of	
Homogenizing solution					
Blocking Reagent					
2.0 Mag Capture Beads (Panel 31377)					
2.0 Probe Set (Panel 31377)		2012			
Homogenizing working solution (HWS)					
Reagent			ne (µL)	Performed	(\(\sigma\)
Homogenizing solution			000	()	
Proteinase K			50	_ ` ′	
Req	uired volume (mL)		5		
Lysis Solution (LS)					
Reagent		Volur	ne (µL)	Performed	(1)
Lysis Mixture	Lysis Mixture		980		-
Nuclease-free water		15522		()	
Proteinase K			98		
Req	ulred volume (mL)		24		
Working Bead Mix (wBM)					
Reagent			ne (µL)	Performed	(v)
Lysis Mixture			58		
Nuclease-free water			76		
Blocking Reagent			60	()	
Proteinase K			26	_, , ,	
2.0 Mag Capture Beads (Panel 31	377)		30		
2.0 Probe Set (Panel 31377)			50		
	ulred volume (mL)	2	60	130 w	ells ^a
number of wells required includes at least 25%	-				
Pipette ID(s):		Laminar flow hood II):	Incubator ID:	
Performed by/date:		Reviewed by/date	e:		

Reagent	ot#	Inventory ID	Entered by/date
Nuclease-free water			
Wash buffer component 1			
Wash buffer component 2			
SAPE			1
SAPE Diluent			
sh buffer 1X (WB-bDNA)	***************************************		
Reagent	Volume (mL)	Performed (√)	
Nuclease-free water	189		
Wash buffer component 1	0.6	()	
Wash buffer component 2	10		
Required volume (mL)	199.6		
rking SAPE solution (wSAPE)			
Reagent	Volume (µL)	Performed (√)	
SAPE	36	()	
SAPE Diluent	12000		
Required volume (mL)	12		
e ID(s): Lar	minar flow hood ID:	 :	
med by/date:R	eviewed by/date:		
38 405 205			

Verified by/date:		
	/instruments/material used on Day 1	
Name	Lot / batch / ID	Entered by/date
Kano	Lot:	Lintoroa Dyrauto
QuantiGene® Plex Assay kit (RT storage)		
	Inventory:	
Working Bead Mix (wBM-)	Refer to appendix #4a.	
Pipette(s) and/or Multi channel pipette(s)		
Laminar flow hood		
Incubator		
Timer		
Lysed samples amb	ient RT stability tracking or N/A ()
	Performed (√) / Time	Entered by/date
Lysed samples thawed at RT.	Time:	
	Start Time:	
When thawed, incubate in an incubator set to maintain 37°C for 30 minutes (± 2 minutes).		
maintain 37 C for 30 minutes (£ 2 minutes).	End time:	
Keep lysed samples at RT until use.	()	
Lysed samples returned to storage.	Time:	
Reagents/solut	tions/instruments used on Day 2	
Name	Lot / batch / ID	Entered by/date
	Lot:	
QuantiGene® Plex Assay kit	Inventory (RT storage):	
(RT and RF storage)		
	Inventory (RF storage):	
Wash buffer 1X (WB-bDNA)	Refer to appendix #4b.	
Pre-Amplifier Solution	Lot:	
The second state of the second	1	
Amplifier Solution	Lot:	
Label Probe Solution	Lot:	
Working SAPE solution (wSAPE)	Refer to appendix #4b.	
SAPE Wash buffer	Lot:	
Laminar flow hood		
Plate shaker		
Incubator		
Incubator Centrifuge		
Centrifuge		

bDNA Assay Sheet

Study/reference number: 5002121

	1	2	3	4	5	6	7	8	9	10	11	12
1	STD OL	STD 4L	STD 8L	MQC-L								LQC-1L
3	STD 0L	STD 4L	STD 8L	MQC-L								LQC-1L
	STD 1L	STD 5L	STD 9L	HQC-L								LQC-2L
	STD 1L	STD 5L	STD 9L	HQC-L								LQC-2L
	STD 2L	STD 6L	LQC-1L									MQC-L
	STD 2L	STD 6L	LQC-1L									MQC-L
;	STD 3L	STD 7L	LQC-2L									HQC-L
i	STD 3L	STD 7L	LQC-2L			7						HQC-L

	_ 1	2	3	4	5	6	7	8	9	10	11	12
A	STD OL	STD 4L	STD 8L	MQC-L		L VIII						LQC-1L
3	STD 0L	STD 4L	STD 8L	MQC-L								LQC-1L
3	STD 1L	STD 5L	STD 9L	HQC-L								LQC-2L
0	STD 1L	STD 5L	STD 9L	HQC-L								LQC-2L
E	STD 2L	STD 6L	LQC-1L					3 .53				MQC-L
F	STD 2L	STD 6L	LQC-1L									MQC-L
3	STD 3L	STD 7L	LQC-2L			1 635						HQC-L
1	STD 3L	STD 7L	LQC-2L									HQC-L

a = Only the shaded columns are used for the pre-loading plate sequence (in singlicate).

Reviewed by/date:_____ Appendix #5 (AP.5002121.bDNAt.03)

bDNA Assay Sheet

	Assay ID:	Assay ID:
Steps	Time / Performed by	Time / Performed
DAY1		
Pre-load: Referring to the pre-loading plate sequence, add the appropriate volume of test material* in singlicate into the appropriate wells of a pre-loading plate.	()	()
Vortex briefly the wBM and add 20 μL/well to the Hybridization Plate.	()	()
Load: Referring to the loading plate sequence, transfer 80 μL of each test material* from the pre-loading plate to the appropriate wells of the Hybridization Plate.	. ()	()
Seal the Hybridization Plate with a pressure seal and incubate overnight (between 18 and 22 hours) in an incubator set to maintain 54°C set at 600 rpm.	Start:	Start:
All required steps were performed under a laminar flow hood and the solutions were brought to RT before use.	()	()
DAY 2		
Pre-warm Pre-Amplifier, Amplifier and Label solutions in an incubator set to maintain 37°C for at least 30 minutes. Bring SAPE Diluent to RT.	(art:) ish:)
Remove the Hybridization Plate from the incubator and centrifuge set at 240 x g for 1 minute at RT.	Finish:	Finish:
Transfer all well contents to a Magnetic Separation Plate.	()	()
Wash: Wash the plate three times as per AP with 100µL of Wash buffer.	1st: () 2nd: () 3rd: ()	1st: () 2nd: () 3rd: ()
Preamplification: Add 100 μL/well of Pre-Amplifier solution and seal the plate with a foil seal. Incubate in an incubator set to maintain 50°C set at 600 rpm for 60 minutes (± 2 min).	Start: () . Finish: ()	Start: () Finish: ()
Wash: Wash the plate three times as per AP with 100µL of Wash buffer.	1st: () 2nd: () 3rd: ()	1st: () 2nd: () 3rd: ()
*Includes Standards, QCs and Study samples.		
Comment(s):		
1) Performed by/date: 3) Performed	by/date:	
2) Performed by/date: 4) Performed	by/date:	

bDNA Assay Sheet

Stuc

	Assay ID:	Assay ID:
Steps	Time / Performed by	Time / Performed by
Amplification: Add 100 μL/well of Amplifier solution and seal the plate with a foil seal. Incubate in an incubator set to maintain 50°C set at 600 rpm for 60 minutes (± 2 min).	Start: () Finish: ()	Start: () Finish: ()
Wash: Wash the plate three times as per AP with 100µL of Wash buffer.	1st: () 2nd: () 3rd: ()	1st: () 2nd: () 3rd: ()
Labelling: Add 100 μL/well of Label Probe solution and seal the plate with a foil seal. Incubate in an incubator set to maintain 50°C set at 600 rpm for 60 minutes (± 2 min).	Start: () Finish: ()	Start: () Finish: ()
Wash: Wash the plate three times as per AP with 100µL of Wash buffer.	1st: () 2nd: () 3rd: ()	1st: () 2nd: () 3rd: ()
Binding: Add 100 µL/well of Working SAPE solution and seal the plate with a foil seal. Incubate at RT on a plate shaker set at 600 rpm for 30 minutes (± 1 min).	Start: () Finish: ()	Start: () Finish: ()
Wash: Wash the plate three times as per AP with 100µL of <u>SAPE</u> Wash buffer.	1st: () 2nd: () 3rd: ()	1st: () 2nd: () 3rd: ()
Add 130 µL/well of SAPE Wash buffer and place the plate on a plate shaker at RT set at 600 rpm for at least 3 minutes.	Start: () Finish: ()	Start: () Finish: ()
Perform a "Prime" function before each plate reading.	()	()
Read the plate on the Bio-Plex Suspension array.	()	()
Perform a "Wash between plate" after a plate has been read.	() or N/A ()	() or N/A ()
When applicable, all required steps were performed under a laminar flow hood and the solutions were brought to RT and protected from light before use.	()	()
Comment(s):		
1) Performed by/date: 3) Pe	rformed by/date:	
	rformed by/date:	

bDNA Assay Sheet

Study/re	eference	number:	5002121
----------	----------	---------	---------

				<u>Data</u>	Review	<u> </u>						
Assay acceptance	Assay ID:						Assay ID:					
criteria	UL128	UL130	UL131	gL	gH	gB	UL128	UL130	UL131	gL	gH	gB
	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Blank < LLOQ	or	or	or	or	or	or	or	or	or	or	or	or
	No	No	No	No	No	No	No	No	No	No	No	No
Number of working STDs*	1	1	1	1	1	1	1	1	1	1	1	1
Number of LQCs**	1	1	1	1	1	1	1	1	1	1	1	1
Number of MQCs**	1	1	1	1	1	1	1	1	1	1	1	1
Number of HQCs**	1_	1	1	1	1	1	1	1	1	1	1	1
Total number of QCs meeting acceptance criteria.	1	,	1	1	1	1	1	1	1	1	1	1
Entered by/date:							•		-			

^{*} with a % theoretical within 75% - 125% and within 70% - 130% for LLOQ and ULOQ. In addition, ≥ 30 beads acquired for at least one replicate.

^{**}with a % theoretical within 75% to125% and % CV between replicate values ≤ 25%. In addition, ≥ 30 beads acquired for

				Scienti	fic Revi	ew				0		
	Assa	Assay ID:						Assay ID:				
	UL128	UL130	UL131	gL	gH	gB	UL128	UL130	UL131	gL	gH	gB
	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Assay is acceptable:	or	or	or	or	or	or	or	or	or	or	or	or
	No	No	No	No	No	No	No	No	No	No	No	No
	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Number of beads ≥ 30	or	or	or	or	or	or	or	or	or	or	or	or
	No	No	No	No	No	No	No	No	No	No	No	No
	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	or	or	or	or	or	or	or	or	or	or	or	or
Study samples to repeat:	No	No	No	No	No	No	No	No	No	No	No	No
	or	or	or	or	or	or	or	or	or	or	or	or
	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Entered by/date	:											

Reviewed by/date:______ Appendix #5 (AP.5002121.bDNAt.03)

Ref													
olume	Dilu												
		ent		Refer to appendix #4a									
			THE RESIDENCE OF THE PARTY OF T										
	пичэ	Lysis solution	Dilution prepared	Total volume									
(p.L.)	Volume (µL)	Volume (µL)	(√)	(µL)									
			(, 2)										
			()										
			()										
			()										
_	-		()										
			()										
			()										
			()										
-			7 ()										
			()										
\neg			()										
			()										
			()										
			()										
			()										
			()										
			()										
			()										
(mL):	0	0											
La	aminar flo	w hood ID:											
		Laminar flow	Laminar flow hood ID:	Laminar flow hood ID:									

Appendix 4 AP.5002121.EXT.02

ANALYTICAL PROCEDURE

Title: TISSUE PROCESSING FOR THE QUANTITATION OF mRNA	AP Number: AP.5002121.EXT.02	Effective Date: Date of AP signature
	Page 1 of 2 pages	Supersedes: 24-Jul-2017
Approved by: (b) (6) Senior Research Scientist I, Immunology	1 (6)	Date: 24 Int 2017
Authorized by:	,, (O)	Date:
(b) (6) Associate Scientific Director, Immunology	/ / /	24 Int 2017

1. PURPOSE

To describe a tissue sample processing method for the quantitation of mRNA.

2. SCOPE

This analytical procedure applies to all personnel performing activities related to this method.

3. RESPONSIBILITY

All staff performing this assay are responsible for compliance with this analytical procedure.

4. REQUIRED FORM

Appendices #1 and #2 should be verified by a Scientist prior to use.

Appendix #1 Sample Information Sheet (example of a document)

Appendix #2 Solution Preparation Sheet (example of a spreadsheet)

Appendix #3 Tissue Sample Processing Sheet

5. MATERIALS/EQUIPMENT/REAGENT

Notes:

- i. Materials can be substituted provided the same specifications are met.
- ii. The procedure may require other general laboratory supplies commonly used in the Immunology laboratory.

5.1. Materials/Equipment

- RNase wipes, Life Technologies, cat#: AM9786M
- DNAse and RNAse free tubes with metal beads (polypropylene, various caps, various sizes)
- Matrix Green Beads (MP Biomedicals, cat. 6040-801)
- Laboratory timer
- Pipettes (multi-channel, micro, repeater)
- Pipette tips and/or Eppendorf combitips with filter (various sizes)
- Centrifuge
- Controlled temperature shaker (set to maintain 65°C)
- Laminar flow hood
- Vortex mixer
- Geno/Grinder
- Dry ice
- Wet ice

No:	Date effective:	Supersedes:	Dogo 2 of 2 pages
AP.5002121.EXT.02	Date of AP signature	24-Jul-2017	Page 2 of 2 pages

5.2. QuantiGene Sample Processing Kit (Tissue samples)

Affymetrix; cat#: QS0106; Lot #: refer to Appendix #1. Store as indicated below. Expiry date: as per manufacturer.

· For frozen components: should be kept on wet ice until use.

Kit components:

Component ID	Quantity	Storage
Homogenizing solution	75 mL	RT
Proteinase K	360 µL	F

5.3. Other reagents

- Nuclease free water, Life Technologies, cat#: AM9939 (or 4387936)

6. PREPARATION OF ASSAY SOLUTION

Notes:

- Volumes described for any preparation may be scaled up or down proportionally as long as the target concentration is not changed. All changes must be documented in the raw data.
- ii. All preparations should be performed under a laminar flow hood.
- iii. The Proteinase K reagent should be kept on wet ice prior to use.

6.1. Homogenizing working solution (code: HWS)

- Referring to Appendix #2, add 500 μL of Proteinase K to 50 mL of Homogenizing solution.
- Invert to mix.
- Keep at RT until use.
- Expiry: To be used on the day of preparation.

7. SAMPLE PROCESSING PROCEDURE:

- 7.1. All steps should be performed under a laminar flow hood with the exception of the centrifugation and incubation steps.
- 7.2. All solutions should be brought to RT prior to use.
- 7.3. Refer to Appendix #3 for the sample processing procedure.

8. REVISION HISTORY

Version	Effective date of this version	Updates	
02	Date of AP signature	Added Management authorization signature. Corrected the Study number on all Appendices. Minor updates on Appendix #3.	
01	24-Jul-2017	• N/A	

Sample Type	Animal ID	Day	Timepoint	weight ^a
				(mg)
	1			
				4
			9	
4				
0				
e transcribed from	necropsy weighing sl	neet.		
ID:				
a porformed buldet	e:			

			Performed (√)
	Proteinase K kept of	on wet ice until use.	()
lot#:	Inventory ID:	Volume (µL)	Performed (√)
		50000	()
		500	()
	Required volume (mL)	50	
		lot#: Inventory ID: Required volume (mL) Laminar flow hood ID:	Iot#: Inventory ID: Volume (μL)

Appendix #2 (AP.5002121.EXT.02)

1 of 1

	Tissue Sample Processing	g Sheet					
Study No:	Sample	Sample Processing ID.:					
	IN-PROCESS SAMPLE ST						
		Performed (√)	Performed by (Init./date)				
Samples transported	on dry ice.	()					
	REAGENTS / MATERIA	ALS					
Name	Lot # / Batch #		Entered by (Init./date)				
Homogenizing Solution	Refer to Appendix:		10.				
Matrix Green Beads	W P						
	INSTRUMENTS						
Na	ame	ID	Entered by (Init./date)				
Incubator (set to maintai	n 65°C)						
Geno/Grinder							
Laminar flow hood							
Pipette (s)							
Centrifuge							
	SAMPLE PROCESSII	NG					
	Steps	Perfor	med by				
40400508500	ALL AND THE SHEET EMPLOYED						
Tissue samples kept on	dry ice.	()	()				
	ns and on dry ice, transfer the appropriate e tubes containing the metal beads.	()	()				
Under aseptic conditions working solution.	s, at RT, add 250 μL of homogenizing	()	()				
Homogenize using the G	Seno/Grinder set at 1650 RPM for 1 minute.	()	()				
Centrifuge tubes set at 1	4000 x g at RT for 2 minutes.	()	()				
Homogenize using the G	Seno/Grinder set at 1650 RPM for 1 minute.	()	()				
	4000 x g at RT for 2 minutes.	()	()				
Centrifuge tubes set at 1							
	ate:		*				
	ate:		Page 1 of 2				

Study No:		ue Sample Proc		ng She		g ID.:	8		
	SAL	MDI E DDOCESS	INC	(0004)	n				
	SAI	MPLE PROCESS	ING	-	-	med by		of the last	
Steps						l de la			
Under aseptic conditions, at RT, ad µL of homogenizing working solution		()			()		
Incubate in an incubator set to main 65°C for	ntain	Incubation start: Vortex Time:		()	Incubation start: Vortex Time:		()
65°C for 10 minutes ± 1 minute and vortex vigorously. Repeat incubation step tw for a total of 3 x 10 minutes.	twice	Incubation start: Vortex Time:		()	Incubation start: Vortex Time:		()
		Incubation start: Vortex Time:		()	Incubation start: Vortex Time:		()
After the incubation, add the appropriate and the appropriate and the sample tubes and homogenize using Geno/Grinder set at 1650 RPM for minute.	ne ng the	()			()		
Centrifuge tubes set at <u>16000</u> x g a 10 minutes.	t RT for	()			()		
Transfer the supernatant to approplabeled tubes.	riate	()			()		
Samples brought to sample manag for storage in a freezer set to maint 80°C, until analysis.		()			()		
(1) Performed by/date: (2) Performed by/date: Comment(s):									_
Pages 1 and 2 reviewed by/date: _									
Appendix #3 (AP.5002121.EXT	.02)					1	Page 2	2 of 2	

Appendix 5 Certificate of Analysis

200 Tech Square • Cambridge, MA 02139 phone 617-714-6500 • fax 617-583-1998

Summary of Analysis

bieieiteine efficient	DPAD-SOA-0006.1
Dirige mi Diernefritung Ciel-jenerafein	06 Jul 2017
-Nativisticis	001
Beerduni continu	mRNA-1647 test article
Production dissipations	mRNA-1647 LNP in 100mM Tris, 7% PG, 1mM DTPA, pH 7.75
Len No.	MTDP 17048
And the state of t	MTDS16019
	MTDS16020
	MTDS16034
Dienes Craffichering (buffit	MTDS16035
	MTDS16033
	MTDS16027
ibmige grandenteifffineife	20 Apr 2017
figure traffic	T = Initial
Seeingge	-20°C
Present Constitut	20 Apr 2018

IVani	Missifred	Tavilling Talianania	Administrate Collecting	Pass RT matches Reference Standards*		
Appearance	Visual	2017_04_28- 010	White to off-white dispersion, essentially free from particulates			
ID	qPCR DPTM-0017 (Draft)	2017_06_01- 020*	C _T ≤ 25			
mRNA Content	HPLC-IEX DPTM-0024	2017_04_20- 010	1.6 mg/mL - 2.4 mg/mL 1.9		1.9 mg/mL	
		1	· · · · · · · · · · · · · · · · · · ·	Peak	% Area	
	HPLC-RPIP DPTM-0026	2017_06_01- 020		uL131	15.7	
1				uL128	15.4	
mRNA Purity			Donast Basulta	uL130	14.1	
IIIKNA Purity			Report Results	gL	15.8	
				gH	13.6	
			1	gB	16.5	
				Total	91.1	
% Encapsulation	RB Flourescence DPTM-0011	2017_06_09- 011	≥ 80%	92%** 85 nm		
Particle Size	DLS DPTM-0031	2017_05_05- 034	Z-ave			

Doc: DPAD-SOA-0006.1

messenger therapeutics

200 Tech Square • Cambridge, MA 02139 phone 617-714-6500 • fax 617-583-1998

Polydispersity Index	DLS DPTM-0031	2017_05_05- 034	≥ 0.3			0.2
			Peak	Concentration (mg/mL)	Peak	Concentration (mg/mL)
	UPLC-CAD	2017 05 22-	SM102	15.5-25.9	SM-102	18.0
Lipid	DPTM-0019	7000	Cholesterol	6.5-10.9	Cholesterol	
	DE LIVI-0019	023	DSPC	3.5-5.8	DSPC	4,0
			PEG-DMG	1.6-2.7	PEG-DMG	1.9
			Total Deg	Report	% Total Area	
рН	USP <791>	2017_05_01- 002	pH 7.0-8.0		pH 7.6	
Osmolality ·	USP <785>	2017_05_05- 035	Report Result		1294 mOsm/kg	
Residual Ethanol	Headspace-GC	N/A	≤ 5000 ppm		Pending result	
Particulate	USP <788>,	Study Number 963886-S01	Size	# of Particles/C ontainer	Size	# of Particles/C ontainer
Matter	Method 2		≤10 µm	≤ 3000	≤ 10 µm	16
			≤ 25 μm	≤300	≤ 25 µm	5
Endotoxin	USP <85> (Kinetic turbidimetry)	Report 0517- 054	≤ 10 EU/mL			L (Beginning, and End)
		Const. No	Туре	CFU Count	Туре	CFU Count
Bioburden	USP <61>	Study Number	TAMC	≤1 CFU/10mL	TAMC	<1 CFU/10mL
	ADMINISTRAÇÃO	963887-S01	TYMC	≤1 CFU/10mL	TYMC	<1 CFU/10mL

^{**}t-1M data. t-initial was not tested

Data
Approved:

(b) (6)

Senior Scientist,
DP Analytical Development

(b) (6)

Date: 06Jul 2017

Doc: DPAD-SOA-0006.1

Page 2 of 2

^{**}qPCR will be tested for confirmation. HPLC-RPIP data was leveraged for ID $\,\cdot\,$

Toxicokinetic Report

Clarification

The average value of terminal half-life for the muscle (i.e. injection site) in Sections 4.2 and 5 of the toxicokinetic report should be read 14.9 instead of 8.39 based on the results of the toxicokinetic evaluation.

Changes indicated below had no impact on the study conclusion.

Note: Additions are indicated in bold underlined text and deletions are indicated in bold strikethrough text in sections indicated below. Values were not updated directly in the toxicokinetic report.

Section 4.2. Pharmacokinetic Evaluation

The half-life ($t_{1/2}$) of mRNA-1647 was reliably estimated in muscle (site of injection), proximal popliteal and axillary distal lymph nodes and spleen with average values for all construct $t_{1/2}$ of **14.9-8.39**, 34.8, 31.1 and 63.0 hours, respectively.

Section 5. Conclusion

Concentrations of mRNA-1647 were quantifiable in the majority of tissues examined at the first time point collected (2 hours post dose) and peak concentrations were reached between 2 and 24 hours post dose in tissues with exposures above that of plasma. The $t_{1/2}$ of mRNA-1647 was reliably estimated in muscle (site of injection), proximal popliteal and axillary distal lymph nodes and spleen with average values for all construct $t_{1/2}$ of **14.9 8.39**, 34.8, 31.1 and 63.0 hours, respectively.

NON-GLP FINAL REPORT

Study Phase: Pharmacokinetics

Test Facility Study No. 5002121

TEST SITE:

Moderna Therapeutics, Inc. 200 Technology Square, Third Floor Cambridge, MA 02139, USA

TEST FACILITY:

Charles River Laboratories Montreal ULC Sherbrooke Site (CR SHB) 1580 Ida-Metivier Sherbrooke, QC J1E 0B5 Canada

Page 1 of 55

TABLE OF CONTENTS

LIST	OF FIGURES	3
LIST	OF TABLES	3
	INTRODUCTION	
	EXPERIMENTAL DESIGN	
	MATERIALS AND METHODS	
	Non-compartmental Analysis	
3.3.	Computerized Systems	6
4.	RESULTS AND DISCUSSIONS	6
4.1.	Concentration Observations	6
4.2.	Pharmacokinetic Evaluation.	6
5.	CONCLUSION	7
6.	REPORT APPROVAL	. 9

LIST OF FIGURES

Figure 1	Concentration vs. Time Curves of mRNA-1647 in Male Crl:CD(SD) Sprague-Dawley Rat Plasma and Tissues	10
	LIST OF TABLES	
Table 1	Concentrations of mRNA-1647 in Male Crl:CD(SD) Sprague-Dawley Rat Plasma and Tissues	26
Table 2	Pharmacokinetic Parameters of mRNA-1647 in Male Crl:CD(SD) Sprague-Dawley Rat Following an Intramuscular Injection of mRNA- 1647	50
Table 3	Tissue-to-Plasma Ratios of mRNA-1647 in Male Crl:CD(SD) Sprague-Dawley Rat Following an Intramuscular Injection of mRNA-1647	54

1. INTRODUCTION

This report describes the pharmacokinetics (PK) of mRNA-1647 in male Crl:CD(SD) Sprague-Dawley rat plasma and tissues following a single intramuscular injection of 100 µg mRNA-1647.

For the work detailed in this report, the Pharmacokinetic phase experimental start date was 23 August 2017, and the Pharmacokinetic phase experimental completion date was 07 Sept 2017.

2. EXPERIMENTAL DESIGN

Experimental procedures applicable to PK analysis are summarized in Text Table 1.

Text Table 1 Experimental Design

Group	Test Article	Dose Level (μg)	Dose Volume	Dose Concentration	No. of Animals
No.	1 est Al ticle	Dose Level (µg)	(µL)	(mg/mL)	Males
1	mRNA-1647	100	200	0.5	35

The vehicle used for this study was phosphate buffered saline (PBS) (1X), pH 7.2.

The Test Article was administered to the appropriate animals via intramuscular injection into the lateral compartment of the thigh once on Day 1.

Blood samples and tissues were collected on Day 1 according to the schedule illustrated in Text Table 2.

Text Table 2
PK Sample Collection Schedule

Group No.			Subgroup Molos (Time Postdose) on Day I						
110.		Maies	0° hr	2 hrs	8 hrs	24 hrs	48 hrs	72 hrs	120 hrs
	A	5	X	-	-	-	-	-	-
	В	5	-	X	-	-	-	-	-
	С	5	-	-	X	-	-	-	-
1	D	5	-	-	-	X	-	-	-
	Е	5	-	-	-	-	X	-	-
	F	5	-	-	-	-	-	X	-
	G	5	-	-	-	-	-	-	X

x = Sample collected; -= Not applicable.

Animals were flushed with sodium chloride with Heparin and sodium nitrite solution to remove blood as much as possible in the tissues and then with PBS 1X. Tissues (lung [left lobe], liver [left lateral], heart [ventricle bilateral], right kidney, axillary distal lymph nodes [bilateral pooled], proximal popliteal and inguinal lymph nodes [bilateral pooled], spleen, brain [left

^a Sample collected before dosing.

b TK time point started at the perfusion.

hemisphere], stomach [glandular region], testes [right testicle], eye [left], bone marrow femur [bilateral pooled], jejunum [middle region], and injection site muscle) were collected, rinsed with 1X PBS, dried on paper towel, weighed, and immediately snap frozen on liquid nitrogen, and kept on dry ice. Feces from bowel tissues were removed before processing.

PK blood samples were processed to plasma and analyzed, along with tissues collected, using a qualified bDNA multiplex method. Samples were analyzed for all six mRNA constructs (gB, gH, gL, UL130, UL131A, and UL128) present in mRNA-1647. The lower limit of quantification was set at 0.05, 0.01, 0.01, 0.05, 0.01, and 0.01 ng/mL for gB, gH, gL, UL130, UL131A, and UL128 constructs, respectively for plasma and tissues.

3. MATERIALS AND METHODS

3.1. Data Analysis

PK parameters were estimated using Phoenix pharmacokinetic software (Certara, USA) using a non-compartmental approach consistent with the intramuscular (plasma and tissues) routes of administration. All parameters were generated from mRNA-1647 construct concentrations for individual constructs in plasma and tissues from Day 1. Parameters were estimated using nominal sampling times relative to the start of each dose administration. Concentration values reported as below the limit of quantitation (BQL) were assigned a value of zero. All derived PK parameters were reported to 3 significant digits, except for T_{max} and $t_{1/2}$ which were reported to one decimal place.

The area under the concentration vs. time curve (AUC) was calculated using the linear trapezoidal method with linear interpolation and sparse sampling. The AUC was not calculated for PK profiles with less than 3 quantifiable concentrations of Test Article at separate time points. When practical, the terminal elimination phase of each concentration versus time curve was estimated using at least three observed concentration values. The slope of the elimination phase was determined using log linear regression on the unweighted concentration data. The parameters described in Text Table 3 were reported.

Descriptive statistics (numbers, means, standard error and standard deviations, as appropriate) for appropriate grouping and sorting variables were generated

AUC tissue/AUC plasma ratios were calculated using Microsoft Excel 2016. For the calculation of tissue to plasma ratios, where tissue is in ng/g and plasma is in ng/mL units, 1 g is assumed to be equal to 1 mL.

Text Table 3
PK Parameters Estimated

Parameter	Description of Parameter
T_{max}	The time after dosing at which the maximum observed concentration was observed.
C_{max}	The maximum observed concentration measured after dosing.
AUC _(0-t)	The area under the concentration versus time curve from the start of dose administration to the time after dosing at which the last quantifiable concentration was observed, using the linear trapezoidal method.

Parameter	Description of Parameter
$t_{1/2}$	The apparent terminal elimination half life.

3.2. Computerized Systems

Critical computerized systems used in the study by the Test Facility are listed in Text Table 4.

Text Table 4 Computerized Systems

System Name	Version No.	Description of Data Collected and/or Analyzed			
Phoenix	7.0	Computation of non-compartmental analysis, descriptive statistics and ratios, as well as graphical and tabular output			
Microsoft Excel	2016	AUC tissue/AUC plasma ratios calculation			

4. RESULTS AND DISCUSSIONS

4.1. Concentration Observations

(Table 1)

No quantifiable mRNA-1647 concentrations for any of the constructs were observed in plasma and tissues predose samples (BQL), with exception for 2 plasma samples in gH construct assay which were just above the LLOQ.

Mean plasma concentrations of mRNA-1647 were quantifiable up to 24 hours post dose with inter-animal variability between 21.8 and 79.8 CV%. The only quantifiable plasma samples beyond 24 hours were 6 gH samples which were just above the LLOQ.

The gradient of mRNA-1647 constructs concentrations in evaluated tissues suggests that Test Article distributes from the site of administration proceeding through the lymphatic system. Test Article was retained at the site of administration and upon entry into circulation was primarily deposited in spleen. The amounts of mRNA-1647 detected in some peripheral tissues, although detectable, overall were negligible.

Concentrations of mRNA-1647 constructs were quantifiable by the first time point collected (2 hours post dose) in highly exposed tissues (injection site muscle, lymph nodes, spleen). Other peripheral tissues have demonstrated varying concentrations of individual constructs generally at low levels, except for kidneys where no mRNA-1647 constructs were detected at any time point. In muscle (site of injection), lymph nodes and spleen, mRNA-1647 concentrations were quantifiable up to the last sampling collection time, 120 hours post dose. In general, high concentration variability was observed for all tissues examined.

4.2. Pharmacokinetic Evaluation

(Figure 1, Table 2 and Table 3)

mRNA-1647 was detected in all of the analyzed tissues except for kidney. For the bone marrow, brain, jejunum, heart, liver, lung, stomach and testes, $AUC_{(0-t)}$ was calculated using less than 3

Test Facility Study No. 5002121

quantifiable mean concentrations and therefore, is an estimate. For highly exposed tissues, peak concentration (C_{max}) was observed between 2 hours and 8 hours post dose in muscle and lymph nodes and between 2 and 24 hours post dose in spleen. For all six mRNA-1647 constructs, measured levels for gB, gH, gL, UL130, UL131A, and UL128 in plasma and tissues were detectable in 1:1:1:1:1:1 ratio.

The half-life ($t_{1/2}$) of mRNA-1647 was reliably estimated in muscle (site of injection), proximal popliteal and axillary distal lymph nodes and spleen with average values for all construct $t_{1/2}$ of 8.39, 34.8, 31.1 and 63.0 hours, respectively.

Peak mRNA-1647 plasma concentration was reached at the first sampling time point (2 hours post dose). Peak concentration was followed by a rapid elimination phase. A rough estimation of $t_{1/2}$ for mRNA-1647 from initial data points of PK profile, including the C_{max} yielded values between 2.7 and 3.8 hours. The C_{max} and $AUC_{(0-t)}$ associated with a mRNA-1647 intramuscular administration of 100 μ g in male Crl:CD(SD) Sprague-Dawley rats were between 1.60 and 2.30 ng/mL and between 22.7 and 25.5 hr*ng/mL, respectively.

The highest mRNA-1647 exposure was observed in muscle (site of injection), followed by proximal (popliteal) and axillary distal lymph nodes, suggesting the Test Article distribution to the circulation by lymph flow. All other tissues tested, except for spleen and eye, had exposures comparable to or below the measured plasma concentration (tissue to plasma AUC ratios below 1.0). Exposure observed for the eye was only slightly higher than that in plasma. Concentrations were no longer detectable after 24 hours.

The averaged for all constructs, mRNA-1647 tissue-to-plasma $AUC_{(0-t)}$ ratios for highly exposed tissues were 939, 201, 62.8, and 13.4 for muscle (injection site), the lymph nodes (proximal popliteal and axillary distal) and spleen, respectively.

5. CONCLUSION

The PK of mRNA-1647 in male Crl:CD(SD) Sprague-Dawley rat plasma and tissues were evaluated following a single intramuscular injection of mRNA-1647 at a dose level of 100 μg.

Overall, mRNA-1647 constructs demonstrated nearly identical PK behavior. For all six mRNA-1647 constructs, measured levels for gB, gH, gL, UL130, UL131A, and UL128 in plasma and tissues were measured in a 1:1:1:1:1 ratio.

The highest mRNA-1647 exposure was observed in muscle (site of injection), followed by proximal (popliteal) and axillary distal lymph nodes, suggesting the mRNA-1647 distribution to the circulation by lymph flow.

All other peripheral tissues have demonstrated exposures comparable or below that measured in plasma.

Concentrations of mRNA-1647 were quantifiable in the majority of tissues examined at the first time point collected (2 hours post dose) and peak concentrations were reached between 2 and 24 hours post dose in tissues with exposures above that of plasma. The $t_{1/2}$ of mRNA-1647 was reliably estimated in muscle (site of injection), proximal popliteal and axillary distal lymph

nodes and spleen with average values for all construct $t_{1/2}$ of 8.39, 34.8, 31.1 and 63.0 hours, respectively.

Date: 24 Oct 2017

Appendix 8

6. REPORT APPROVAL

(b) (6)

Principal Scientist, Pharmacokinetics

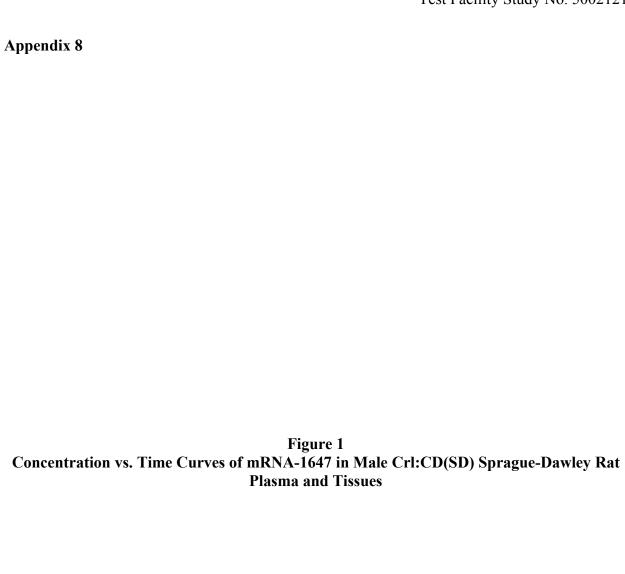


Figure 1.1: Summary (\pm SD) Male Sprague-Dawley Rat Plasma mRNA-1647 Concentrations Following Intramuscular Administration of mRNA-1647 on Day 1

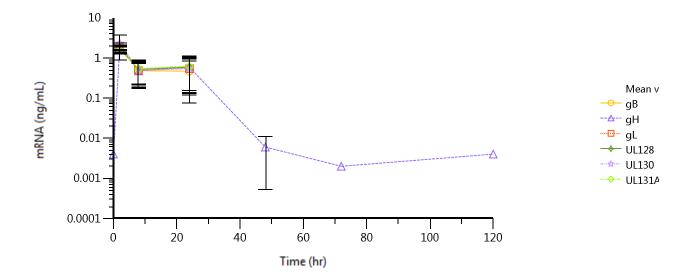


Figure 1.2: Summary (± SD) Male Sprague-Dawley Rat Bone Marrow mRNA-1647 Concentrations Following Intramuscular Administration of mRNA-1647 on Day 1

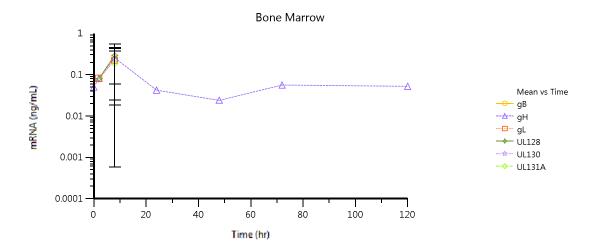


Figure 1.3: Summary (± SD) Male Sprague-Dawley Rat Brain mRNA-1647 Concentrations Following Intramuscular Administration of mRNA-1647 on Day 1

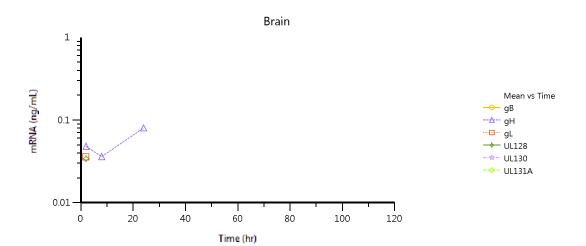


Figure 1.4: Summary (± SD) Male Sprague-Dawley Rat Distal Lymph Nodes mRNA-1647 Concentrations Following Intramuscular Administration of mRNA-1647 on Day 1

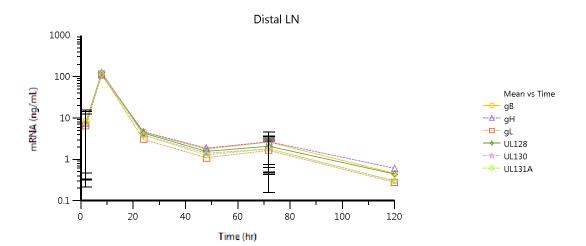


Figure 1.5: Summary (± SD) Male Sprague-Dawley Rat Eye mRNA-1647 Concentrations Following Intramuscular Administration of mRNA-1647 on Day 1

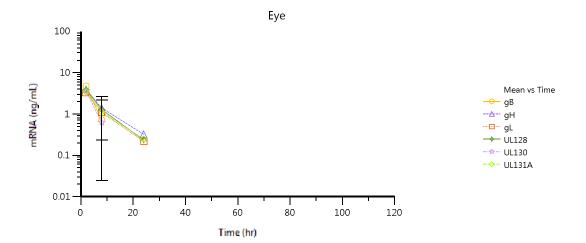


Figure 1.6: Summary (± SD) Male Sprague-Dawley Rat Heart mRNA-1647 Concentrations Following Intramuscular Administration of mRNA-1647 on Day 1

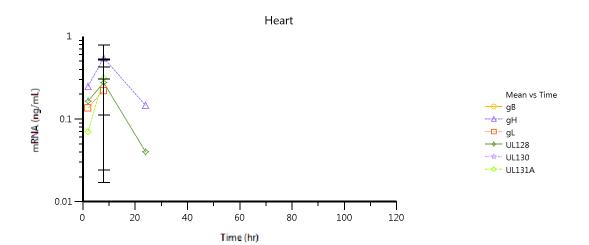


Figure 1.7: Summary (± SD) Male Sprague-Dawley Rat Injection Site Muscle mRNA-1647 Concentrations Following Intramuscular Administration of mRNA-1647 on Day 1

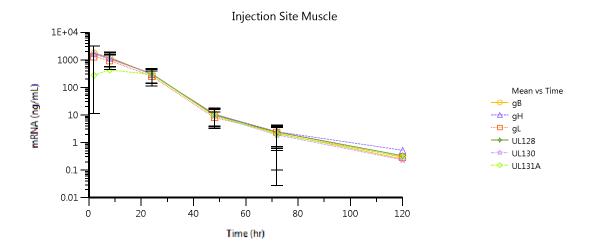


Figure 1.8: Summary (± SD) Male Sprague-Dawley Rat Jejunum mRNA-1647 Concentrations Following Intramuscular Administration of mRNA-1647 on Day 1

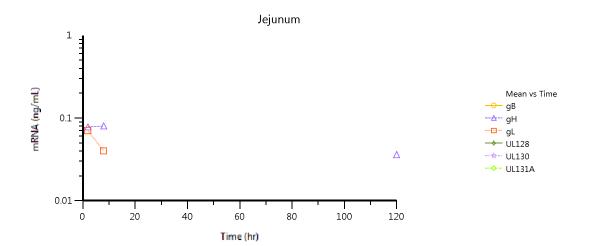


Figure 1.9: Summary (\pm SD) Male Sprague-Dawley Rat Kidney mRNA-1647 Concentrations Following Intramuscular Administration of mRNA-1647 on Day 1

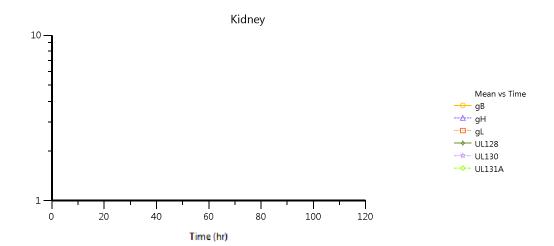


Figure 1.10: Summary (± SD) Male Sprague-Dawley Rat Liver mRNA-1647 Concentrations Following Intramuscular Administration of mRNA-1647 on Day 1

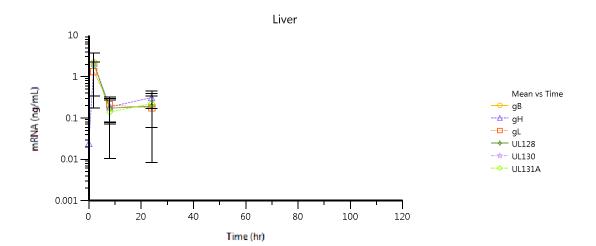


Figure 1.11: Summary (± SD) Male Sprague-Dawley Rat Lung mRNA-1647 Concentrations Following Intramuscular Administration of mRNA-1647 on Day 1

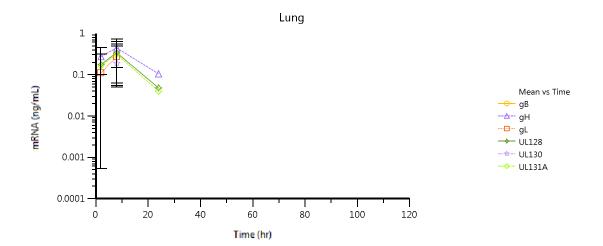


Figure 1.12: Summary (± SD) Male Sprague-Dawley Rat Proximal Lymph node mRNA-1647 Concentrations Following Intramuscular Administration of mRNA-1647 on Day 1

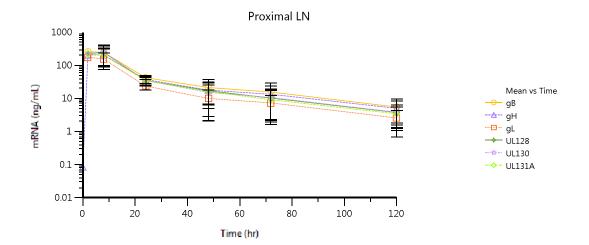


Figure 1.13: Summary (± SD) Male Sprague-Dawley Rat Spleen mRNA-1647 Concentrations Following Intramuscular Administration of mRNA-1647 on Day 1

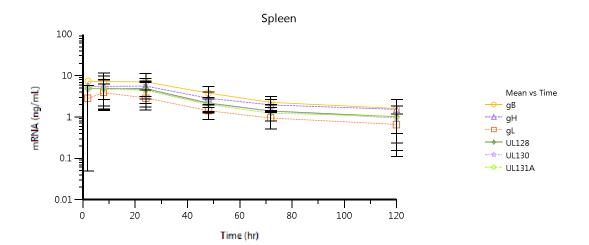


Figure 1.14: Summary (± SD) Male Sprague-Dawley Rat Stomach mRNA-1647 Concentrations Following Intramuscular Administration of mRNA-1647 on Day 1

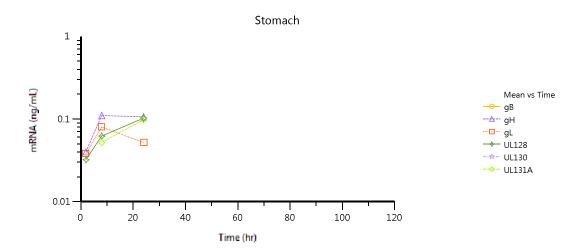


Figure 1.15: Summary (± SD) Male Sprague-Dawley Rat Testes mRNA-1647 Concentrations Following Intramuscular Administration of mRNA-1647 on Day 1

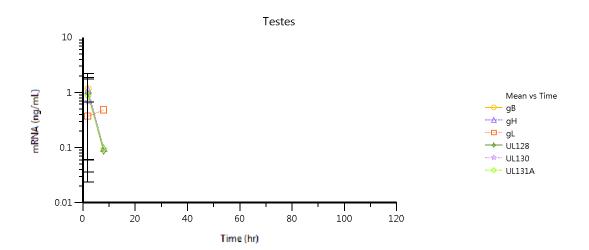


Table 1 Concentrations of mRNA-1647 in Male Crl:CD(SD) Sprague-Dawley Rat Plasma and Tissues

Table 1.1: Mean Male Sprague-Dawley Rat Plasma mRNA-1647 Concentrations Following Intramuscular Administration of 100 µg mRNA-1647 on Day 1

	mRNA (ng/mL)											
Time (hr)	gB		gH		gL		UL128		UL130		UL131A	
(111)	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
0.0	BQL	NA	0.00400^{a}	0.00548	BQL	NA	BQL	NA	BQL	NA	BQL	NA
2.0	2.02	0.406	1.91	0.417	1.74	0.395	1.66	0.338	2.30	1.39	1.60	0.341
8.0	0.480	0.249	0.470	0.297	0.492	0.323	0.520	0.342	0.494	0.281	0.538	0.351
24.0	0.468	0.391	0.586	0.468	0.552	0.412	0.588	0.455	0.542	0.411	0.624	0.471
48.0	BQL	NA	0.00600^{a}	0.00548	BQL	NA	BQL	NA	BQL	NA	BQL	NA
72.0	BQL	NA	0.00200^{a}	0.00447	BQL	NA	BQL	NA	BQL	NA	BQL	NA
120.0	BQL	NA	0.00400^{a}	0.00548	BQL	NA	BQL	NA	BQL	NA	BQL	NA

BQL = Below Quantifiable Limit (at 0.05, 0.01, 0.01, 0.05, 0.01, and 0.01 ng/mL for gB, gH, gL, UL130, UL131A, and UL128)

NA = not applicable; all values are BQL

a mean value was calculated with several BQL data points, hence the resulting value appears to be below the LLOQ.

Table 1.2: Individual Male Sprague-Dawley Rat Plasma mRNA-1647 Concentrations Following Intramuscular Administration of 100 μg mRNA-1647 on Day 1

Time Postdose	Animal _ ID	mRNA (ng/mL)								
(hr)		UL130	UL131A	UL128	gB	gH	gL			
	1001	BLQ	BLQ	BLQ	BLQ	0.01	BLQ			
	1002	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ			
Predose	1003	BLQ	BLQ	BLQ	BLQ	0.01	BLQ			
	1004	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ			
	1005	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ			
	1006	1.26	1.22	1.34	1.61	1.45	1.27			
	1007	2.10	1.96	2.01	2.36	2.32	2.22			
2	1008	2.06	1.96	2.03	2.54	2.39	2.06			
	1009	4.69	1.44	1.51	1.83	1.74	1.63			
	1010	1.39	1.41	1.39	1.76	1.67	1.50			
	1011	0.43	0.46	0.42	0.41	0.39	0.42			
	1012	0.11	0.05	0.05	0.13	0.05	0.04			
8	1013	0.67	0.81	0.78	0.69	0.68	0.68			
	1014	0.85	0.94	0.92	0.75	0.82	0.90			
	1015	0.41	0.43	0.43	0.42	0.41	0.42			
	1016	0.15	0.17	0.16	0.18	0.19	0.15			
	1017	0.27	0.32	0.31	0.25	0.27	0.29			
24	1018	1.21	1.39	1.34	1.15	1.37	1.22			
	1019	0.56	0.64	0.59	0.38	0.57	0.58			
	1020	0.52	0.60	0.54	0.38	0.53	0.52			
	1021	BLQ	BLQ	BLQ	BLQ	0.01	BLQ			
	1022	BLQ	BLQ	BLQ	BLQ	0.01	BLQ			
48	1023	BLQ	BLQ	BLQ	BLQ	0.01	BLQ			
	1024	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ			
	1025	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ			
	1026	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ			
	1027	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ			
72	1028	BLQ	BLQ	BLQ	BLQ	0.01	BLQ			
	1029	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ			
************************************	1030	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ			
	1031	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ			
	1032	BLQ	BLQ	BLQ	BLQ	0.01	BLQ			
120	1033	BLQ	BLQ	BLQ	BLQ	0.01	BLQ			
	1034	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ			
	1035	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ			

BQL = Below Quantifiable Limit (at 0.05, 0.01, 0.01, 0.05, 0.01, and 0.01 ng/mL for gB, gH, gL, UL130, UL131A, and UL128)

	Ti		. n						
Tissue	Time	g			Н	gL		UL128	
		Mean	SD	Mean	SD	Mean	SD	Mean	SD
	0 0	BQL	BQL	0 0500	0 112	BQL	BQL	BQL	BQL
	2 0	BQL	BQL	0 0820	0 112	0 0800	0 110	0 0800	0 110
D	8 0	BQL	BQL	0 254	0 195	0 224	0 206	0 292	0 268
Bone Marrow	24 0	BQL	BQL	0 0420	0 0939	BQL	BQL	BQL	BQL
	48 0	BQL	BQL	0 0240	0 0537	BQL	BQL	BQL	BQL
	72 0	BQL	BQL	0 0560	0 0767	BQL	BQL	BQL	BQL
	120 0	BQL	BQL	0 0520	0 0726	BQL	BQL	BQL	BQL
	0 0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	2 0	BQL	BQL	0 0480	0 107	0 0360	0 0805	0 0340	0 0760
	8 0	BQL	BQL	0 0360	0 0805	BQL	BQL	BQL	BQL
Brain	24 0	BQL	BQL	0 0800	0 110	BQL	BQL	BQL	BQL
	48 0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	72 0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	120 0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	0.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	2 0	8 36	8 37	7 29	6 98	6 40	6 19	7 84	7 36
	8 0	108	225	110	229	117	243	125	261
Distal LN	24 0	4 54	9 59	4 63	9 03	3 01	5 83	4 29	8 25
	48 0	1 76	1 98	1 87	2 12	1 09	1 19	1 56	1 68
	72 0	2 61	1 96	2 67	1 89	1 64	1 21	2 06	1 60
	120 0	0 454	1 02	0 608	0 655	0 278	0 472	0 442	0 572
	0.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	2 0	4 72	6 20	3 92	4 90	3 23	4 10	3 91	4 89
	8 0	0 710	1 59	1 40	1 17	1 08	1 14	1 28	1 45
Eye	24 0	BQL	BQL	0 322	0 363	0 218	0 345	0 236	0 528
,	48 0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	72 0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	120 0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	0.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	2 0	BQL	BQL	0 248	0 273	0 136	0 191	0 164	0 179
	8 0	BQL	BQL	0 548	0 240	0 220	0 203	0 276	0 252
Heart	24 0	BQL	BQL	0 146	0 149	BQL	BQL	0 0400	0 0894
110411	48 0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	72 0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	120 0				BQL				
		BQL	BQL	BQL		BQL	BQL	BQL	BQL
	0 0	BQL	BQL	BQL 1720	BQL	BQL 1210	BQL 1420	BQL 1620	BQL
Injection	2 0	1770	1800	1720	1850	1310	1430	1620	1610
Site	8 0	1240	689	1180	619	933	488	1100	506
Muscle	24 0	298	157	294	150	255	141	317	166
	48 0	11 1	7 23	10 7	6 68	8 04	4 75	9 91	6 25
	72 0	2 15	2 12	2 46	1 87	2 41	1 66	2 39	1 74

	120.0	0.256	0.572	0.518	0.566	0.294	0.447	0.328	0.527
	0.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	2.0	BQL	BQL	0.0780	0.107	0.0700	0.0959	BQL	BQL
	8.0	BQL	BQL	0.0800	0.110	0.0400	0.0894	BQL	BQL
Jejunum	24.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	48.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	72.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	120.0	BQL	BQL	0.0360	0.0805	BQL	BQL	BQL	BQL
	0.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	2.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	8.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Kidney	24.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	48.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	72.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	120.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	0.0	BQL	BQL	0.0240	0.0537	BQL	BQL	BQL	BQL
	2.0	2.16	2.70	2.12	2.20	1.30	0.967	2.00	1.82
Liver	8.0	BQL	BQL	0.186	0.109	0.206	0.124	0.172	0.100
	24.0	BQL	BQL	0.310	0.138	0.176	0.168	0.192	0.192
	48.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	72.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	120.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	0.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	2.0	BQL	BQL	0.274	0.172	0.110	0.151	0.176	0.177
	8.0	BQL	BQL	0.442	0.290	0.274	0.220	0.340	0.288
Lung	24.0	BQL	BQL	0.104	0.147	BQL	BQL	0.0480	0.107
	48.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	72.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	120.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	0.0	BQL	BQL	0.0840	0.188	BQL	BQL	BQL	BQL
	2.0	260	270	205	212	175	183	227	236
	8.0	249	156	206	115	156	82.6	246	149
Proximal LN	24.0	42.7	6.03	37.3	8.52	23.7	5.20	35.1	11.1
LIN	48.0	21.5	14.8	17.9	11.7	9.97	7.87	17.2	14.3
	72.0	15.6	13.4	13.2	11.1	7.23	5.33	10.2	7.91
	120.0	5.50	3.72	4.98	3.40	2.59	1.91	3.74	2.68
Spleen	0.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
-		~	-	*	-	-	-	~	•

	2.0	7.36	8.52	5.59	6.04	2.87	2.82	4.86	5.27
	8.0	7.15	4.51	5.55	4.00	3.83	2.33	4.84	3.34
	24.0	7.06	3.91	5.63	2.86	2.92	1.45	4.87	2.73
	48.0	3.80	1.81	2.86	1.15	1.41	0.545	2.19	0.811
	72.0	2.26	0.830	1.95	0.645	0.940	0.428	1.40	0.613
	120.0	1.59	1.61	1.51	1.11	0.658	0.545	1.02	0.860
	0.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	2.0	BQL	BQL	0.0400	0.0894	0.0380	0.0850	0.0320	0.0716
Stomach	8.0	BQL	BQL	0.110	0.156	0.0800	0.112	0.0620	0.139
	24.0	BQL	BQL	0.106	0.155	0.0520	0.116	0.102	0.145
	48.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	72.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	120.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	0.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	2.0	1.16	1.61	1.11	1.07	0.366	0.324	0.946	0.887
	8.0	BQL	BQL	0.0980	0.219	0.420	0.750	0.0860	0.192
Testes	24.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
103003	48.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	72.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
	120.0	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL

Tissue	Time	U1	130	U1.	31A
		Mean	SD	Mean	SD
	0.0	BQL	BQL	BQL	BQL
	2.0	BQL	BQL	BQL	BQL
	8.0	BQL	BQL	0.186	0.185
Bone Marrow	24.0	BQL	BQL	BQL	BQL
	48.0	BQL	BQL	BQL	BQL
	72.0	BQL	BQL	BQL	BQL
	120.0	BQL	BQL	BQL	BQL
	0.0	BQL	BQL	BQL	BQL
	2.0	BQL	BQL	BQL	BQL
Di.	8.0	BQL	BQL	BQL	BQL
Brain	24.0	BQL	BQL	BQL	BQL
	48.0	BQL	BQL	BQL	BQL
	72.0	BQL	BQL	BQL	BQL

	120.0	BQL	BQL	BQL	BQL		
	0.0	BQL	BQL	BQL	BQL	••	
	2.0	7.42	7.47	7.78	7.45		
	8.0	129	271	114	241		
Distal LN	24.0	3.85	8.08	3.87	7.55		
LN	48.0	1.40	1.66	1.28	1.35		
	72.0	1.81	1.65	1.81	1.32		
	120.0	0.294	0.657	0.302	0.515		
	0.0	BQL	BQL	BQL	BQL	•••••	
	2.0	3.61	4.79	3.43	4.39		
	8.0	0.626	1.40	1.13	1.11		
Eye	24.0	BQL	BQL	0.246	0.393		
	48.0	BQL	BQL	BQL	BQL		
	72.0	BQL	BQL	BQL	BQL		
	120.0	BQL	BQL	BQL	BQL		
	0.0	BQL	BQL	BQL	BQL		 ······································
	2.0	BQL	BQL	0.0700	0.157		
	8.0	BQL	BQL	0.312	0.200		
Heart	24.0	BQL	BQL	BQL	BQL		
	48.0	BQL	BQL	BQL	BQL		
	72.0	BQL	BQL	BQL	BQL		
	120.0	BQL	BQL	BQL	BQL		
	0.0	BQL	BQL	BQL	BQL	•••••	
	2.0	1630	1740	277	379		
Injection	8.0	1050	507	427	470		
Injection Site	24.0	304	162	298	164		
Muscle	48.0	9.37	6.00	9.39	6.12		
	72.0	1.90	1.80	2.05	1.53		
	120.0	0.232	0.519	0.310	0.520		
	0.0	BQL	BQL	BQL	BQL	•••••	
	2.0	BQL	BQL	BQL	BQL		
	8.0	BQL	BQL	BQL	BQL		
Jejunum	24.0	BQL	BQL	BQL	BQL		
	48.0	BQL	BQL	BQL	BQL		
	72.0	BQL	BQL	BQL	BQL		
	120.0	BQL	BQL	BQL	BQL		
Kidney	0.0	BQL	BQL	BQL	BQL	•••••	
-							

	2.0	BQL	BQL	BQL	BQL
	8.0	BQL	BQL	BQL	BQL
	24.0	BQL	BQL	BQL	BQL
	48.0	BQL	BQL	BQL	BQL
	72.0	BQL	BQL	BQL	BQL
	120.0	BQL	BQL	BQL	BQL
	0.0	BQL	BQL	BQL	BQL
	2.0	1.87	2.26	1.99	2.07
	8.0	BQL	BQL	0.140	0.130
Liver	24.0	BQL	BQL	0.222	0.164
	48.0	BQL	BQL	BQL	BQL
	72.0	BQL	BQL	BQL	BQL
	120.0	BQL	BQL	BQL	BQL
	0.0	BQL	BQL	BQL	BQL
	2.0	BQL	BQL	0.162	0.161
	8.0	0.188	0.420	0.310	0.248
Lung	24.0	BQL	BQL	0.0400	0.0894
	48.0	BQL	BQL	BQL	BQL
	72.0	BQL	BQL	BQL	BQL
	120.0	BQL	BQL	BQL	BQL
	0.0	BQL	BQL	BQL	BQL
	2.0	233	243	225	236
	8.0	252	150	200	110
Proximal LN	24.0	34.8	10.7	34.4	9.44
LIN	48.0	15.1	10.2	16.3	14.2
	72.0	10.8	8.57	9.21	7.60
	120.0	3.82	2.59	3.43	2.11
	0.0	BQL	BQL	BQL	BQL
	2.0	4.87	5.66	5.10	5.90
	8.0	5.03	3.15	4.69	3.24
Spleen	24.0	4.53	2.46	4.41	2.61
-	48.0	2.10	0.819	2.01	0.749
	72.0	1.37	0.550	1.24	0.428
	120.0	0.942	0.953	1.02	0.784
	0.0	BQL	BQL	BQL	BQL
Stomach	2.0	BQL	BQL	BQL	BQL
~	8.0	BQL	BQL	0.0520	0.116
	0.0	PAL	PAL	0.0320	0.110

	24.0	BQL	BQL	0.0980	0.142	
	48.0	BQL	BQL	BQL	BQL	
	72.0	BQL	BQL	BQL	BQL	
	120.0	BQL	BQL	BQL	BQL	
	0.0	BQL	BQL	BQL	BQL	
	2.0	0.682	0.988	0.872	0.849	
	8.0	BQL	BQL	0.0960	0.215	
Testes	24.0	BQL	BQL	BQL	BQL	
10000	48.0	BQL	BQL	BQL	BQL	
	72.0	BQL	BQL	BQL	BQL	
	120.0	BQL	BQL	BQL	BQL	

 $BQL = Below\ Quantifiable\ Limit\ (at\ 0.05,\ 0.01,\ 0.01,\ 0.05,\ 0.01,\ and\ 0.01\ ng/mL\ for\ gB,\ gH,\ gL,\ UL130,\ UL131A,\ and\ UL128)$

Table 1.4: Individual Male Sprague-Dawley Rat Tissue mRNA-1647 Concentrations Following Intramuscular Administration of 100 µg mRNA-1647 on Day 1

Tr:	m:	0.1:			mRNA (ng	/g tissue)		
Tissue	Time	Subject	UL130	UL131A	UL128	gB	gH	gL
Lung	0	1001	BQL	BQL	BQL	BQL	BQL	BQL
Lung	0	1002	BQL	BQL	BQL	BQL	BQL	BQL
Lung	0	1003	BQL	BQL	BQL	BQL	BQL	BQL
Lung	0	1004	BQL	BQL	BQL	BQL	BQL	BQL
Lung	0	1005	BQL	BQL	BQL	BQL	BQL	BQL
Lung	2	1006	BQL	BQL	BQL	BQL	BQL	BQL
Lung	2	1007	BQL	BQL	BQL	BQL	0.27	BQL
Lung	2	1008	BQL	0.35	0.39	BQL	0.44	0.27
Lung	2	1009	BQL	0.29	0.31	BQL	0.4	0.28
Lung	2	1010	BQL	0.17	0.18	BQL	0.26	BQL
Lung	8	1011	BQL	BQL	BQL	BQL	0.22	BQL
Lung	8	1012	BQL	0.35	0.39	BQL	0.44	0.29
Lung	8	1013	BQL	0.35	0.37	BQL	0.43	0.27
Lung	8	1014	0.94	0.67	0.77	BQL	0.92	0.61
Lung	8	1015	BQL	0.18	0.17	BQL	0.2	0.2
Lung	24	1016	BQL	BQL	BQL	BQL	BQL	BQL
Lung	24	1017	BQL	BQL	BQL	BQL	0.21	BQL
Lung	24	1018	BQL	0.2	0.24	BQL	0.31	BQL
Lung	24	1019	BQL	BQL	BQL	BQL	BQL	BQL
Lung	24	1020	BQL	BQL	BQL	BQL	BQL	BQL
Lung	48	1021	BQL	BQL	BQL	BQL	BQL	BQL
Lung	48	1022	BQL	BQL	BQL	BQL	BQL	BQL
Lung	48	1023	BQL	BQL	BQL	BQL	BQL	BQL
Lung	48	1024	BQL	BQL	BQL	BQL	BQL	BQL
Lung	48	1025	BQL	BQL	BQL	BQL	BQL	BQL
Lung	72	1026	BQL	BQL	BQL	BQL	BQL	BQL
Lung	72	1027	BQL	BQL	BQL	BQL	BQL	BQL
Lung	72	1028	BQL	BQL	BQL	BQL	BQL	BQL
Lung	72	1029	BQL	BQL	BQL	BQL	BQL	BQL
Lung	72	1030	BQL	BQL	BQL	BQL	BQL	BQL
Lung	120	1031	BQL	BQL	BQL	BQL	BQL	BQL
Lung	120	1032	BQL	BQL	BQL	BQL	BQL	BQL
Lung	120	1033	BQL	BQL	BQL	BQL	BQL	BQL

Tianua	Time	Culsiant		mRNA (ng/g tissue)							
Tissue	Time	Subject	UL130	UL131A	UL128	gB	gH	gL			
Lung	120	1034	BQL	BQL	BQL	BQL	BQL	BQL			
Lung	120	1035	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	0	1001	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	0	1002	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	0	1003	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	0	1004	BQL	BQL	BQL	BQL	0.12	BQL			
Liver	0	1005	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	2	1006	BQL	0.31	0.36	BQL	0.25	0.31			
Liver	2	1007	BQL	0.67	0.86	BQL	0.65	0.65			
Liver	2	1008	5.11	5.23	4.64	6.15	5.37	2.52			
Liver	2	1009	3.29	2.89	3.14	3.71	3.4	2.13			
Liver	2	1010	0.93	0.83	1	0.95	0.93	0.9			
Liver	8	1011	BQL	0.21	0.21	BQL	0.24	0.24			
Liver	8	1012	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	8	1013	BQL	0.27	0.26	BQL	0.28	0.3			
Liver	8	1014	BQL	0.22	0.21	BQL	0.22	0.3			
Liver	8	1015	BQL	BQL	0.18	BQL	0.19	0.19			
Liver	24	1016	BQL	0.17	BQL	BQL	0.17	BQL			
Liver	24	1017	BQL	BQL	BQL	BQL	0.21	BQL			
Liver	24	1018	BQL	0.28	0.3	BQL	0.42	0.24			
Liver	24	1019	BQL	0.21	0.22	BQL	0.26	0.27			
Liver	24	1020	BQL	0.45	0.44	BQL	0.49	0.37			
Liver	48	1021	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	48	1022	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	48	1023	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	48	1024	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	48	1025	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	72	1026	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	72	1027	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	72	1028	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	72	1029	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	72	1030	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	120	1031	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	120	1032	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	120	1033	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	120	1034	BQL	BQL	BQL	BQL	BQL	BQL			
Liver	120	1035	BQL	BQL	BQL	BQL	BQL	BQL			

Tissue	Time	Subject			mRNA (ng	g/g tissue)		
1 15500	THIC	Buoject	UL130	UL131A	UL128	gB	gH	gL
Heart	0	1001	BQL	BQL	BQL	BQL	BQL	BQL
Heart	0	1002	BQL	BQL	BQL	BQL	BQL	BQL
Heart	0	1003	BQL	BQL	BQL	BQL	BQL	BQL
Heart	0	1004	BQL	BQL	BQL	BQL	BQL	BQL
Heart	0	1005	BQL	BQL	BQL	BQL	BQL	BQL
Heart	2	1006	BQL	BQL	BQL	BQL	BQL	BQL
Heart	2	1007	BQL	BQL	0.17	BQL	0.26	BQL
Heart	2	1008	BQL	0.35	0.43	BQL	0.66	0.4
Heart	2	1009	BQL	BQL	0.22	BQL	0.32	0.28
Heart	2	1010	BQL	BQL	BQL	BQL	BQL	BQL
Heart	8	1011	BQL	0.43	0.47	BQL	0.66	0.28
Heart	8	1012	BQL	0.22	BQL	BQL	0.26	0.01
Heart	8	1013	BQL	0.45	0.45	BQL	0.78	0.41
Heart	8	1014	BQL	0.46	0.46	BQL	0.72	0.4
Heart	8	1015	BQL	BQL	BQL	BQL	0.32	BQL
Heart	24	1016	BQL	BQL	BQL	BQL	BQL	BQL
Heart	24	1017	BQL	BQL	BQL	BQL	BQL	BQL
Heart	24	1018	BQL	BQL	BQL	BQL	0.21	BQL
Heart	24	1019	BQL	BQL	0.2	BQL	0.35	BQL
Heart	24	1020	BQL	BQL	BQL	BQL	0.17	BQL
Heart	48	1021	BQL	BQL	BQL	BQL	BQL	BQL
Heart	48	1022	BQL	BQL	BQL	BQL	BQL	BQL
Heart	48	1023	BQL	BQL	BQL	BQL	BQL	BQL
Heart	48	1024	BQL	BQL	BQL	BQL	BQL	BQL
Heart	48	1025	BQL	BQL	BQL	BQL	BQL	BQL
Heart	72	1026	BQL	BQL	BQL	BQL	BQL	BQL
Heart	72	1027	BQL	BQL	BQL	BQL	BQL	BQL
Heart	72	1028	BQL	BQL	BQL	BQL	BQL	BQL
Heart	72	1029	BQL	BQL	BQL	BQL	BQL	BQL
Heart	72	1030	BQL	BQL	BQL	BQL	BQL	BQL
Heart	120	1031	BQL	BQL	BQL	BQL	BQL	BQL
Heart	120	1032	BQL	BQL	BQL	BQL	BQL	BQL
Heart	120	1033	BQL	BQL	BQL	BQL	BQL	BQL
Heart	120	1034	BQL	BQL	BQL	BQL	BQL	BQL
Heart	120	1035	BQL	BQL	BQL	BQL	BQL	BQL
Kidney	0	1001	BQL	BQL	BQL	BQL	BQL	BQL
Kidney	0	1002	BQL	BQL	BQL	BQL	BQL	BQL

		~		mRNA (ng/g tissue)							
Tissue	Time	Subject	UL130	UL131A	UL128	gB	gH	gL			
Kidney	0	1003	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	0	1004	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	0	1005	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	2	1006	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	2	1007	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	2	1008	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	2	1009	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	2	1010	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	8	1011	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	8	1012	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	8	1013	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	8	1014	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	8	1015	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	24	1016	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	24	1017	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	24	1018	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	24	1019	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	24	1020	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	48	1021	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	48	1022	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	48	1023	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	48	1024	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	48	1025	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	72	1026	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	72	1027	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	72	1028	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	72	1029	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	72	1030	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	120	1031	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	120	1032	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	120	1033	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	120	1034	BQL	BQL	BQL	BQL	BQL	BQL			
Kidney	120	1035	BQL	BQL	BQL	BQL	BQL	BQL			
Distal LN	0	1001	BQL	BQL	BQL	BQL	BQL	BQL			
Distal LN	0	1002	BQL	BQL	BQL	BQL	BQL	BQL			
Distal LN	0	1003	BQL	BQL	BQL	BQL	BQL	BQL			
Distal LN	0	1004	BQL	BQL	BQL	BQL	BQL	BQL			

			mRNA (ng/g tissue)						
Tissue	Time	Subject	UL130	UL131A	UL128	g/g tissue) gB	gH	gL	
Distal LN	0	1005	BQL	BQL	BQL	BQL	BQL	BQL	
Distal LN	2	1005	8.05	7.28	8.2	9.42	7.38	БQL 6.4	
Distal LN Distal LN	2	1007	18.9	18.65	18.88	21.16	18.08	15.89	
Distal LN Distal LN	2	1007	8.62	11.03	9.87	9.5	8.72	7.9	
Distal LN Distal LN	2	1008	BQL	0.57	0.68	9.5 BQL	0.71	0.56	
Distal LN Distal LN	2	1010	1.55	1.36	1.55	1.71	1.55	1.24	
Distal LN Distal LN	8	1010	1.33	1.30	1.28	1.71	1.33	0.9	
Distal LN Distal LN	8	1011	1.74	1.66	2.13	1.75	1.66	2.5	
Distal LN Distal LN	8	1012	29.3	22.8	29.53	25.36	27.64	2.3	
Distal LN Distal LN	8	1013	BQL	0.57	0.66	BQL	0.71	0.52	
Distal LN Distal LN	8	1014	612.69	545.21	592.36	510.1	518.97	551.13	
Distal LN Distal LN	8 24	1015	0.95	0.81	1.02	1.04	0.96	0.72	
Distal LN Distal LN	24	1010	18.28	17.38	19.04	21.67	20.77	13.43	
Distal LN Distal LN	24	1017	BQL	0.37	0.44	BQL	0.38	0.37	
Distal LN Distal LN	24	1018	BQL	0.63	0.74	BQL BQL	0.38	0.52	
Distal LN Distal LN	24	1020	BQL	0.03	0.74	BQL	0.74	BQL	
Distal LN Distal LN	48	1020	1.75	1.73	1.98	2.41	2.08	1.16	
Distal LN Distal LN	48	1021	BQL	BQL	BQL	BQL	BQL	BQL	
Distal LN Distal LN	48	1022	4.04	3.36	4.21	4.76	5.36	3.04	
Distal LN Distal LN	48	1023	1.2	1.09	1.3	1.61	1.51	0.96	
Distal LN	48	1025	BQL	0.23	0.32	BQL	0.39	0.31	
Distal LN	72	1026	2.95	2.68	2.97	3.74	3.94	2.36	
Distal LN Distal LN	72	1020	3.16	2.56	3.32	3.84	4.09	2.57	
Distal LN Distal LN	72	1027	BQL	BQL	BQL	BQL	BQL	BQL	
Distal LN	72	1029	BQL	0.8	0.68	1.04	1.31	0.69	
Distal LN	72	1029	2.93	2.99	3.34	4.43	3.99	2.56	
Distal LN	120	1031	BQL	BQL	0.25	BQL	0.27	BQL	
Distal LN	120	1031	1.47	1.19	1.44	2.27	1.76	1.09	
Distal LN	120	1033	BQL	BQL	0.18	BQL	0.32	BQL	
Distal LN	120	1034	BQL	0.32	0.34	BQL	0.51	0.3	
Distal LN	120	1035	BQL	BQL	BQL	BQL	0.18	BQL	
Proximal LN	0	1001	BQL	BQL	BQL	BQL	BQL	BQL	
Proximal LN	0	1002	BQL	BQL	BQL	BQL	BQL	BQL	
Proximal LN	0	1002	BQL	BQL	BQL	BQL	0.42	BQL	
Proximal LN	0	1004	BQL	BQL	BQL	BQL	BQL	BQL	
Proximal LN Proximal LN	0 2	1004 1005 1006	BQL 449.93	BQL 443.15	BQL 460.98	BQL 478.26	BQL 396.66	BQL 346.36	

					mRNA (ng	g/g tissue)		
Tissue	Time	Subject	UL130	UL131A	UL128	gB	gH	gL
Proximal LN	2	1007	14.04	11.69	11.63	15.08	12.87	9.55
Proximal LN	2	1008	30.5	28.79	27.74	37.37	28.61	22.06
Proximal LN	2	1009	534.94	513.16	499.59	612.9	466.75	396.06
Proximal LN	2	1010	133.46	130.47	134.66	156.93	121.57	102.44
Proximal LN	8	1011	68.03	63.37	68.71	57.59	51.38	47.95
Proximal LN	8	1012	175.52	153.99	166.22	166.35	156.06	130.6
Proximal LN	8	1013	418.24	242.75	426.13	431.78	280.45	202.77
Proximal LN	8	1014	202.39	181.3	198.16	204.77	189.98	132.63
Proximal LN	8	1015	394.98	359.54	372.98	386.49	351.4	266.74
Proximal LN	24	1016	53.29	50.18	54.3	53.06	52.12	32.44
Proximal LN	24	1017	28.35	29.01	28.81	38.38	32.01	19.05
Proximal LN	24	1018	31.9	29.62	31.86	41.2	33.83	23.93
Proximal LN	24	1019	26.97	27.19	26.35	38.59	31.8	20.71
Proximal LN	24	1020	33.64	36.22	34.06	42.41	36.89	22.56
Proximal LN	48	1021	23.7	38.03	36.92	37.68	32.4	14.69
Proximal LN	48	1022	28.07	23.41	27.65	36.52	28.12	21.43
Proximal LN	48	1023	11.46	8.88	9.99	17.15	14.27	6.68
Proximal LN	48	1024	6.65	6.16	5.99	8.6	7.91	3.78
Proximal LN	48	1025	5.69	4.98	5.36	7.39	7.04	3.28
Proximal LN	72	1026	4.42	3.47	3.85	5.56	5.13	2.51
Proximal LN	72	1027	6.82	5.3	6.24	9.27	7.7	4.59
Proximal LN	72	1028	21.14	16.22	19.32	32.04	26.34	13.35
Proximal LN	72	1029	2.65	2.45	3.23	3.17	2.86	3.05
Proximal LN	72	1030	18.79	18.59	18.12	28.04	24	12.66
Proximal LN	120	1031	2.72	2.61	2.46	4.05	3.52	1.49
Proximal LN	120	1032	1.13	0.99	1.05	1.53	1.41	0.69
Proximal LN	120	1033	7.12	5.87	7.1	10.39	9.32	5.05
Proximal LN	120	1034	2.16	2.26	1.99	3.18	2.85	1.52
Proximal LN	120	1035	5.99	5.41	6.1	8.37	7.81	4.2
Spleen	0	1001	BQL	BQL	BQL	BQL	BQL	BQL
Spleen	0	1002	BQL	BQL	BQL	BQL	BQL	BQL
Spleen	0	1003	BQL	BQL	BQL	BQL	BQL	BQL
Spleen	0	1004	BQL	BQL	BQL	BQL	BQL	BQL
Spleen	0	1005	BQL	BQL	BQL	BQL	BQL	BQL
Spleen	2	1006	0.84	0.8	0.85	1.31	1.16	0.61
Spleen	2	1007	BQL	0.33	0.49	BQL	0.31	0.69
Spleen	2	1008	5.28	5.51	5.29	9.19	6.38	2.83

					mRNA (ng	g/g tissue)		
Tissue	Time	Subject	UL130	UL131A	UL128	gB	gH	gL
Spleen	2	1009	14.21	14.93	13.53	21.18	15.44	7.55
Spleen	2	1010	4.02	3.94	4.13	5.1	4.68	2.66
Spleen	8	1011	2.28	2.24	3.02	3.69	2.38	2.92
Spleen	8	1012	2.72	1.37	1.33	2.37	1.87	1.79
Spleen	8	1013	6.93	7.1	6.5	10.67	7.43	4.45
Spleen	8	1014	3.58	3.77	3.54	6.11	4.53	2.38
Spleen	8	1015	9.62	8.97	9.79	12.89	11.53	7.6
Spleen	24	1016	1.01	0.94	1.05	1.82	1.6	0.77
Spleen	24	1017	4.78	4.72	4.94	6.77	5.4	3
Spleen	24	1018	4.39	3.94	4.68	7.53	5.97	2.93
Spleen	24	1019	7.95	8.27	8.76	12.81	9.66	4.87
Spleen	24	1020	4.5	4.16	4.92	6.38	5.52	3.02
Spleen	48	1021	1.19	1.16	1.24	2.42	1.99	0.84
Spleen	48	1022	2.86	2.76	3.05	6.62	3.93	1.81
Spleen	48	1023	1.97	2.18	1.99	3.29	2.45	1.36
Spleen	48	1024	1.47	1.29	1.65	2.2	1.71	0.95
Spleen	48	1025	3.03	2.65	3	4.45	4.23	2.11
Spleen	72	1026	1	0.89	0.91	1.53	1.52	0.53
Spleen	72	1027	2.04	1.75	2.19	3.14	2.53	1.5
Spleen	72	1028	0.64	0.71	0.67	1.24	1.09	0.5
Spleen	72	1029	1.54	1.4	1.7	2.6	2.03	1.17
Spleen	72	1030	1.62	1.45	1.53	2.8	2.58	1
Spleen	120	1031	BQL	0.17	BQL	BQL	0.26	BQL
Spleen	120	1032	0.98	1	0.96	1.81	1.26	0.6
Spleen	120	1033	2.14	2.17	2.15	3.72	2.99	1.35
Spleen	120	1034	BQL	0.45	0.42	BQL	0.78	0.3
Spleen	120	1035	1.59	1.32	1.55	2.44	2.27	1.04
Brain	0	1001	BQL	BQL	BQL	BQL	BQL	BQL
Brain	0	1002	BQL	BQL	BQL	BQL	BQL	BQL
Brain	0	1003	BQL	BQL	BQL	BQL	BQL	BQL
Brain	0	1004	BQL	BQL	BQL	BQL	BQL	BQL
Brain	0	1005	BQL	BQL	BQL	BQL	BQL	BQL
Brain	2	1006	BQL	BQL	BQL	BQL	BQL	BQL
Brain	2	1007	BQL	BQL	BQL	BQL	BQL	BQL
Brain	2	1008	BQL	BQL	BQL	BQL	BQL	BQL
Brain	2	1009	BQL	BQL	0.17	BQL	0.24	0.18
Brain	2	1010	BQL	BQL	BQL	BQL	BQL	BQL

Tissue	Time	Subject			mRNA (ng	/g tissue)		
113340	Time	Bubject	UL130	UL131A	UL128	gB	gH	gL
Brain	8	1011	BQL	BQL	BQL	BQL	BQL	BQL
Brain	8	1012	BQL	BQL	BQL	BQL	0.18	BQL
Brain	8	1013	BQL	BQL	BQL	BQL	BQL	BQL
Brain	8	1014	BQL	BQL	BQL	BQL	BQL	BQL
Brain	8	1015	BQL	BQL	BQL	BQL	BQL	BQL
Brain	24	1016	BQL	BQL	BQL	BQL	BQL	BQL
Brain	24	1017	BQL	BQL	BQL	BQL	0.19	BQL
Brain	24	1018	BQL	BQL	BQL	BQL	0.21	BQL
Brain	24	1019	BQL	BQL	BQL	BQL	BQL	BQL
Brain	24	1020	BQL	BQL	BQL	BQL	BQL	BQL
Brain	48	1021	BQL	BQL	BQL	BQL	BQL	BQL
Brain	48	1022	BQL	BQL	BQL	BQL	BQL	BQL
Brain	48	1023	BQL	BQL	BQL	BQL	BQL	BQL
Brain	48	1024	BQL	BQL	BQL	BQL	BQL	BQL
Brain	48	1025	BQL	BQL	BQL	BQL	BQL	BQL
Brain	72	1026	BQL	BQL	BQL	BQL	BQL	BQL
Brain	72	1027	BQL	BQL	BQL	BQL	BQL	BQL
Brain	72	1028	BQL	BQL	BQL	BQL	BQL	BQL
Brain	72	1029	BQL	BQL	BQL	BQL	BQL	BQL
Brain	72	1030	BQL	BQL	BQL	BQL	BQL	BQL
Brain	120	1031	BQL	BQL	BQL	BQL	BQL	BQL
Brain	120	1032	BQL	BQL	BQL	BQL	BQL	BQL
Brain	120	1033	BQL	BQL	BQL	BQL	BQL	BQL
Brain	120	1034	BQL	BQL	BQL	BQL	BQL	BQL
Brain	120	1035	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	0	1001	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	0	1002	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	0	1003	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	0	1004	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	0	1005	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	2	1006	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	2	1007	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	2	1008	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	2	1009	BQL	BQL	0.16	BQL	0.2	0.19
Stomach	2	1010	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	8	1011	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	8	1012	BQL	BQL	BQL	BQL	BQL	BQL

					mRNA (ng	g/g tissue)		
Tissue	Time	Subject	UL130	UL131A	UL128	gB	gH	gL
Stomach	8	1013	BQL	BQL	BQL	BQL	0.22	0.17
Stomach	8	1014	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	8	1015	BQL	0.26	0.31	BQL	0.33	0.23
Stomach	24	1016	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	24	1017	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	24	1018	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	24	1019	BQL	0.31	0.31	BQL	0.34	0.26
Stomach	24	1020	BQL	0.18	0.2	BQL	0.19	BQL
Stomach	48	1021	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	48	1022	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	48	1023	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	48	1024	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	48	1025	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	72	1026	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	72	1027	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	72	1028	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	72	1029	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	72	1030	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	120	1031	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	120	1032	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	120	1033	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	120	1034	BQL	BQL	BQL	BQL	BQL	BQL
Stomach	120	1035	BQL	BQL	BQL	BQL	BQL	BQL
Testes	0	1001	BQL	BQL	BQL	BQL	BQL	BQL
Testes	0	1002	BQL	BQL	BQL	BQL	BQL	BQL
Testes	0	1003	BQL	BQL	BQL	BQL	BQL	BQL
Testes	0	1004	BQL	BQL	BQL	BQL	BQL	BQL
Testes	0	1005	BQL	BQL	BQL	BQL	BQL	BQL
Testes	2	1006	BQL	0.48	0.47	BQL	0.57	BQL
Testes	2	1007	1.25	1.23	1.26	2.54	1.45	0.37
Testes	2	1008	BQL	0.48	0.46	BQL	0.49	0.87
Testes	2	1009	BQL	BQL	0.18	BQL	0.2	0.40
Testes	2	1010	2.16	2.17	2.36	3.26	2.84	0.19
Testes	8	1011	BQL	0.48	0.43	BQL	0.49	1.73
Testes	8	1012	BQL	BQL	BQL	BQL	BQL	0.37
Testes	8	1013	BQL	BQL	BQL	BQL	BQL	BQL
Testes	8	1014	BQL	BQL	BQL	BQL	BQL	BQL

Tianna	Time	Culsiant			mRNA (ng	g/g tissue)		
Tissue	Time	Subject	UL130	UL131A	UL128	gB	gH	gL
Testes	8	1015	BQL	BQL	BQL	BQL	BQL	BQL
Testes	24	1016	BQL	BQL	BQL	BQL	BQL	BQL
Testes	24	1017	BQL	BQL	BQL	BQL	BQL	BQL
Testes	24	1018	BQL	BQL	BQL	BQL	BQL	BQL
Testes	24	1019	BQL	BQL	BQL	BQL	BQL	BQL
Testes	24	1020	BQL	BQL	BQL	BQL	BQL	BQL
Testes	48	1021	BQL	BQL	BQL	BQL	BQL	BQL
Testes	48	1022	BQL	BQL	BQL	BQL	BQL	BQL
Testes	48	1023	BQL	BQL	BQL	BQL	BQL	BQL
Testes	48	1024	BQL	BQL	BQL	BQL	BQL	BQL
Testes	48	1025	BQL	BQL	BQL	BQL	BQL	BQL
Testes	72	1026	BQL	BQL	BQL	BQL	BQL	BQL
Testes	72	1027	BQL	BQL	BQL	BQL	BQL	BQL
Testes	72	1028	BQL	BQL	BQL	BQL	BQL	BQL
Testes	72	1029	BQL	BQL	BQL	BQL	BQL	BQL
Testes	72	1030	BQL	BQL	BQL	BQL	BQL	BQL
Testes	120	1031	BQL	BQL	BQL	BQL	BQL	BQL
Testes	120	1032	BQL	BQL	BQL	BQL	BQL	BQL
Testes	120	1033	BQL	BQL	BQL	BQL	BQL	BQL
Testes	120	1034	BQL	BQL	BQL	BQL	BQL	BQL
Testes	120	1035	BQL	BQL	BQL	BQL	BQL	BQL
Eye	0	1001	BQL	BQL	BQL	BQL	BQL	BQL
Eye	0	1002	BQL	BQL	BQL	BQL	BQL	BQL
Eye	0	1003	BQL	BQL	BQL	BQL	BQL	BQL
Eye	0	1004	BQL	BQL	BQL	BQL	BQL	BQL
Eye	0	1005	BQL	BQL	BQL	BQL	BQL	BQL
Eye	2	1006	BQL	BQL	0.26	BQL	0.45	0.28
Eye	2	1007	BQL	BQL	BQL	BQL	BQL	BQL
Eye	2	1008	11.5	10.48	11.87	14.9	11.95	9.97
Eye	2	1009	4.57	4.72	5.06	6.02	5.01	4.11
Eye	2	1010	2	1.97	2.34	2.7	2.2	1.81
Eye	8	1011	BQL	1.62	1.59	BQL	2.09	1.7
Eye	8	1012	BQL	0.8	0.77	BQL	0.93	BQL
Eye	8	1013	BQL	BQL	BQL	BQL	0.49	0.44
Eye	8	1014	BQL	0.44	0.4	BQL	0.39	0.47
Eye	8	1015	3.13	2.81	3.66	3.55	3.11	2.78
Eye	24	1016	BQL	0.33	BQL	BQL	0.46	0.3

					mRNA (ng	/g tissue)		
Tissue	Time	Subject	UL130	UL131A	UL128	gB	gH	gL
Eye	24	1017	BQL	BQL	BQL	BQL	BQL	BQL
Eye	24	1018	BQL	BQL	BQL	BQL	BQL	BQL
Eye	24	1019	BQL	BQL	BQL	BQL	0.28	BQL
Eye	24	1020	BQL	0.9	1.18	BQL	0.87	0.79
Eye	48	1021	BQL	BQL	BQL	BQL	BQL	BQL
Eye	48	1022	BQL	BQL	BQL	BQL	BQL	BQL
Eye	48	1023	BQL	BQL	BQL	BQL	BQL	BQL
Eye	48	1024	BQL	BQL	BQL	BQL	BQL	BQL
Eye	48	1025	BQL	BQL	BQL	BQL	BQL	BQL
Eye	72	1026	BQL	BQL	BQL	BQL	BQL	BQL
Eye	72	1027	BQL	BQL	BQL	BQL	BQL	BQL
Eye	72	1028	BQL	BQL	BQL	BQL	BQL	BQL
Eye	72	1029	BQL	BQL	BQL	BQL	BQL	BQL
Eye	72	1030	BQL	BQL	BQL	BQL	BQL	BQL
Eye	120	1031	BQL	BQL	BQL	BQL	BQL	BQL
Eye	120	1032	BQL	BQL	BQL	BQL	BQL	BQL
Eye	120	1033	BQL	BQL	BQL	BQL	BQL	BQL
Eye	120	1034	BQL	BQL	BQL	BQL	BQL	BQL
Eye	120	1035	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	0	1001	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	0	1002	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	0	1003	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	0	1004	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	0	1005	BQL	BQL	BQL	BQL	0.25	BQL
Bone Marrow	2	1006	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	2	1007	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	2	1008	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	2	1009	BQL	BQL	0.19	BQL	0.21	0.2
Bone Marrow	2	1010	BQL	BQL	0.21	BQL	0.2	0.2
Bone Marrow	8	1011	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	8	1012	BQL	0.32	0.45	BQL	0.39	0.34
Bone Marrow	8	1013	BQL	0.41	0.52	BQL	0.5	0.38
Bone Marrow	8	1014	BQL	0.2	0.49	BQL	0.19	0.4
Bone Marrow	8	1015	BQL	BQL	BQL	BQL	0.19	BQL
Bone Marrow	24	1016	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	24	1017	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	24	1018	BQL	BQL	BQL	BQL	BQL	BQL

-					mRNA (ng	r/a ticcua)		
Tissue	Time	Subject	UL130	UL131A	UL128	gB g tissue)	gH	gL
Bone Marrow	24	1019	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	24	1019	BQL	BQL BQL	BQL	BQL	0.21	BQL
Bone Marrow	48	1020	-	_	-	-		_
Bone Marrow	48	1021	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow			BQL	BQL	BQL	BQL	BQL	BQL
	48	1023	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	48	1024	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	48	1025	BQL	BQL	BQL	BQL	0.12	BQL
Bone Marrow	72	1026	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	72	1027	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	72	1028	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	72	1029	BQL	BQL	BQL	BQL	0.14	BQL
Bone Marrow	72	1030	BQL	BQL	BQL	BQL	0.14	BQL
Bone Marrow	120	1031	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	120	1032	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	120	1033	BQL	BQL	BQL	BQL	BQL	BQL
Bone Marrow	120	1034	BQL	BQL	BQL	BQL	0.11	BQL
Bone Marrow	120	1035	BQL	BQL	BQL	BQL	0.15	BQL
Jejunum	0	1001	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	0	1002	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	0	1003	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	0	1004	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	0	1005	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	2	1006	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	2	1007	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	2	1008	BQL	BQL	BQL	BQL	0.21	BQL
Jejunum	2	1009	BQL	BQL	BQL	BQL	0.18	0.18
Jejunum	2	1010	BQL	BQL	BQL	BQL	BQL	0.17
Jejunum	8	1011	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	8	1012	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	8	1013	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	8	1014	BQL	BQL	BQL	BQL	0.20	0.20
Jejunum	8	1015	BQL	BQL	BQL	BQL	0.20	BQL
Jejunum	24	1016	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	24	1017	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	24	1018	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	24	1019	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	24	1020	BQL	BQL	BQL	BQL	BQL	BQL

		a			mRNA (ng	g/g tissue)		
Tissue	Time	Subject	UL130	UL131A	UL128	gB	gH	gL
Jejunum	48	1021	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	48	1022	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	48	1023	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	48	1024	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	48	1025	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	72	1026	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	72	1027	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	72	1028	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	72	1029	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	72	1030	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	120	1031	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	120	1032	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	120	1033	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	120	1034	BQL	BQL	BQL	BQL	BQL	BQL
Jejunum	120	1035	BQL	BQL	BQL	BQL	0.18	BQL
IS Muscle	0	1001	BQL	BQL	BQL	BQL	BQL	BQL
IS Muscle	0	1002	BQL	BQL	BQL	BQL	BQL	BQL
IS Muscle	0	1003	BQL	BQL	BQL	BQL	BQL	BQL
IS Muscle	0	1004	BQL	BQL	BQL	BQL	BQL	BQL
IS Muscle	0	1005	BQL	BQL	BQL	BQL	BQL	BQL
IS Muscle	2	1006	34.02	18.30	31.79	37.95	20.33	15.76
IS Muscle	2	1007	2173.31	1.96	2173.12	2384.16	2047.75	1661.86
IS Muscle	2	1008	945.36	802.87	1213.46	1250.57	1171.97	761.58
IS Muscle	2	1009	4400.23	4.12	4124.59	4582.69	4742.96	3624.67
IS Muscle	2	1010	584.95	559.73	566.82	610.75	596.43	485.86
IS Muscle	8	1011	926.3	907.98	978.76	1064.7 ^a	963.80	789.70
IS Muscle	8	1012	1145.24	1.18	1215.63	1182.2	1237.03	1071.16
IS Muscle	8	1013	1235.85	945.69	1287.02	1479.56	1472.70	850.52
IS Muscle	8	1014	289.54	276.56	327.99	292.35	281.66	306.08
IS Muscle	8	1015	1675.84	1.56	1702.62	2193.22	1949.48	1648.81
IS Muscle	24	1016	315.88	303.68	338.92	314.57	295.81	277.33
IS Muscle	24	1017	50.36	50.53	52.41	49.29	51.84	42.34
IS Muscle	24	1018	306.33	291.79	328.5	291.54	312.67	247.38
IS Muscle	24	1019	501.67	511.07	513.88	479.66	461.61	437.29
IS Muscle	24	1020	344.41	334.44	350.66	354.36	346.35	271.29
IS Muscle	48	1021	18.01	18.29	19.15	21.44	19.76	14.68
IS Muscle	48	1022	12.29	11.96	12.55	13.98	14.36	10.53

Tissue	Time	Cubicat			mRNA (ng	/g tissue)		
Tissue	Time	Subject	UL130	UL131A	UL128	gB	gH	gL
IS Muscle	48	1023	8.14	8.81	8.28	10.84	10.01	7.08
IS Muscle	48	1024	2.43	2.45	2.69	2.64	2.66	2.26
IS Muscle	48	1025	6.00	5.46	6.88	6.41	6.46	5.63
IS Muscle	72	1026	3.45	3.55	3.93	3.99	4.38	4.06
IS Muscle	72	1027	2.41	2.34	2.64	2.29	2.54	2.99
IS Muscle	72	1028	3.66	3.45	4.19	4.47	4.25	3.7
IS Muscle	72	1029	BQL	0.49	0.65	BQL	0.58	0.65
IS Muscle	72	1030	BQL	0.41	0.53	BQL	0.57	0.63
IS Muscle	120	1031	1.16	1.20	1.21	1.28	1.48	1.01
IS Muscle	120	1032	BQL	BQL	BQL	BQL	0.14	BQL
IS Muscle	120	1033	BQL	0.35	0.43	BQL	0.58	0.46
IS Muscle	120	1034	BQL	BQL	BQL	BQL	0.22	BQL
IS Muscle	120	1035	BQL	BQL	BQL	BQL	0.17	BQL

BQL = Below Quantifiable Limit (at 0.05, 0.01, 0.01, 0.05, 0.01, and 0.01 ng/mL for gB, gH, gL, UL130, UL131A, and UL128); IS = Injection Site.

a) Upon the QC, the value for the subject 1101 injection site muscle for gB was found to be approximately 30% CV for the replicates which is outside of the defined range for the passing criteria. The datapoint was used in all calculations as it appear to be within the range for the neighboring readouts and was not expected to affect the overall study conclusions.

Table 2
Pharmacokinetic Parameters of mRNA-1647 in Male Crl:CD(SD) Sprague-Dawley Rat
Following an Intramuscular Injection of mRNA-1647

Table 2.1: Summary Mean (\pm SE) mRNA-1647 Pharmacokinetic Parameters in Sprague-Dawley Rat in Plasma and Tissues Following 100 μ g Intramuscular Administration of mRNA-1647 on Day 1

Times	Construct	т (1)	C_{max} (r	ng/mL)	$\mathrm{AUC}_{(0-t)}$ (1	hr*ng/mL)	4 (1
Tissue	Construct	T_{max} (hr)	Mean	SE	Mean	SE	t _{1/2} (hr
	gB	NC	NC	NC	NC	NC	NC
	gH	8.0	0.254	0.0871	7.85	2.03	NC
D M	gL	8.0	0.224	0.0920	2.78	1.03	NC
Bone Marrow	UL128	8.0	0.292	0.120	3.53	1.33	NC
	UL130	NC	NC	NC	NC	NC	NC
	UL131A	8.0	0.186	0.0829	2.05	0.912	NC
	gB	NC	NC	NC	NC	NC	NC
	gH	24.0	0.0800	0.0491	2.19	1.08	NC
ъ.	gL	2.0	0.0360	0.0360	0.144	0.144	NC
Brain	UL128	2.0	0.0340	0.0340	0.136	0.136	NC
	UL130	NC	NC	NC	NC	NC	NC
	UL131A	NC	NC	NC	NC	NC	NC
	gB	8.0	108	101	1460	1110	31.6
	gH	8.0	110	102	1490	1130	36.2
D' - 1131	gL	8.0	117	109	1460	1200	30.6
Distal LN	UL128	8.0	125	117	1620	1290	32.1
	UL130	8.0	129	121	1630	1330	27.9
	UL131A	8.0	114	108	1470	1190	28.5
	gB	2.0	4.72	2.77	26.7	13.6	NC
	gH	2.0	3.92	2.19	37.6	11.0	NC
T.	gL	2.0	3.23	1.84	29.2	9.75	NC
Eye	UL128	2.0	3.91	2.19	34.5	12.2	NC
	UL130	2.0	3.61	2.14	21.3	11.0	NC
	UL131A	2.0	3.43	1.96	31.1	10.2	NC
	gB	NC	NC	NC	NC	NC	NC
	gH	8.0	0.548	0.107	9.94	1.85	NC
	gL	8.0	0.220	0.0907	2.96	1.05	NC
Heart	UL128	8.0	0.276	0.113	4.49	1.51	NC
	UL130	NC	NC	NC	NC	NC	NC
	UL131A	8.0	0.312	0.0896	3.71	1.02	NC

Tissue	Construct	T _{max} (hr)	C _{max} (1	ng/mL)	AUC _(0-t) (1	hr*ng/mL)	t _{1/2} (hr
1 issue	Construct	I max (III)	Mean	SE	Mean	SE	t _{1/2} (III
	gH	2.0	1720	828	26100	4700	17.1
	gL	2.0	1310	638	20900	3720	15.2
	UL128	2.0	1620	720	25300	4090	14.9
	UL130	2.0	1630	777	24500	4240	13.8
	UL131A	8.0	427	210	12100	2830	15.0
	gB	NC	NC	NC	NC	NC	NC
	gH	8.0	0.0800	0.0490	2.06	1.04	NC
T .	gL	2.0	0.0700	0.0429	0.720	0.472	NC
Jejunum	UL128	NC	NC	NC	NC	NC	NC
	UL130	NC	NC	NC	NC	NC	NC
	UL131A	NC	NC	NC	NC	NC	NC
	gB	NC	NC	NC	NC	NC	NC
	gH	NC	NC	NC	NC	NC	NC
77.1	gL	NC	NC	NC	NC	NC	NC
Kidney	UL128	NC	NC	NC	NC	NC	NC
	UL130	NC	NC	NC	NC	NC	NC
	UL131A	NC	NC	NC	NC	NC	NC
	gB	2.0	2.16	1.21	8.65	4.83	NC
	gH	2.0	2.12	0.982	16.8	4.15	NC
	gL	2.0	1.30	0.432	11.0	2.37	NC
Liver	UL128	2.0	2.00	0.814	13.7	3.72	NC
	UL130	2.0	1.87	1.01	7.46	4.04	NC
	UL131A	2.0	1.99	0.928	13.9	4.04	NC
	gB	NC	NC	NC	NC	NC	NC
	gH	8.0	0.442	0.130	8.04	1.96	NC
	gL	8.0	0.274	0.0984	3.45	1.12	NC
Lung	UL128	8.0	0.340	0.129	5.40	1.74	NC
	UL130	8.0	0.188	0.188	2.07	2.07	NC
	UL131A	8.0	0.310	0.111	4.86	1.49	NC
	gB	2.0	2.02	0.181	22.7	3.77	NC
	gH	2.0	1.91	0.187	24.9	4.49	NC
Plasma	gL	2.0	1.74	0.177	23.4	4.07	NC
	UL128	2.0	1.66	0.151	24.1	4.44	NC

Appendix 8

Т:	Constant	T (b-v)	C _{max} (1	ng/mL)	AUC _(0-t) (1	hr*ng/mL)	4 (la-r)
Tissue	Construct	$T_{max}(hr)$	Mean	SE	Mean	SE	$t_{1/2}$ (hr)
	UL131A	2.0	1.60	0.153	24.8	4.59	NC
	gB	2.0	260	121	5850	949	33.5
	gH	8.0	206	51.6	4860	722	38.2
D	gL	2.0	175	81.9	3460	538	36.3
Proximal LN	UL128	8.0	246	66.6	5190	875	32.8
	UL130	8.0	252	67.2	5240	881	35.7
	UL131A	2.0	225	106	4600	719	32.2
	gB	2.0	7.36	3.81	460	52.9	46.9
	gH	24.0	5.63	1.28	371	39.5	83.0
C-1	gL	8.0	3.83	1.04	196	21.0	68.2
Spleen	UL128	24.0	4.87	1.22	297	34.8	68.8
	UL130	8.0	5.03	1.41	288	33.0	64.9
	UL131A	2.0	5.10	2.64	277	33.1	46.2
	gB	NC	NC	NC	NC	NC	NC
	gH	8.0	0.110	0.0696	3.49	1.59	NC
Cr. 1	gL	8.0	0.0800	0.0499	2.07	1.19	NC
Stomach	UL128	24.0	0.102	0.0648	2.85	1.47	NC
	UL130	NC	NC	NC	NC	NC	NC
	UL131A	24.0	0.0980	0.0634	2.53	1.39	NC
	gB	2.0	1.16	0.719	4.64	2.88	NC
	gH	2.0	1.11	0.480	5.52	2.20	NC
T4	gL	8.0	0.420	0.335	6.08	3.73	NC
Testes	UL128	2.0	0.946	0.397	4.73	1.85	NC
	UL130	2.0	0.682	0.442	2.73	1.77	NC
	UL131A	2.0	0.872	0.380	4.54	1.85	NC

NC = Not Calculable, due to insufficient data points above LLOQ

Table 3
Tissue-to-Plasma Ratios of mRNA-1647 in Male Crl:CD(SD) Sprague-Dawley Rat
Following an Intramuscular Injection of mRNA-1647

Table 3.1: Mean Tissue-to-Plasma Ratios in Sprague-Dawley Rat Following Intramuscular Administration of mRNA-1647

Matrix	AUC _(0-t) Ratio						
Manix	gB	gH	gL	UL128	UL130	UL131A	Average
Injection Site Muscle	1190	1050	893	1050	961	487	939
Proximal LN	257	195	148	215	206	185	201
Distal LN	64.1	59.8	62.6	67.1	64	59.2	62.8
Spleen	20.2	14.9	8.36	12.3	11.3	11.2	13.4
Eye	1.18	1.51	1.25	1.43	0.838	1.26	1.24
Liver	0.381	0.674	0.470	0.570	0.293	0.562	0.499
Testes	0.204	0.222	0.260	0.196	0.107	0.183	0.209
Bone Marrow	NC	0.316	0.119	0.147	NC	0.0825	NR
Brain	NC	0.0880	0.00615	0.00564	NC	NC	NR
Heart	NC	0.400	0.127	0.186	NC	0.150	NR
Jejunum	NC	0.0827	0.0308	NC	NC	NC	NR
Kidney	NC	NC	NC	NC	NC	NC	NR
Lung	NC	0.323	0.148	0.224	0.0812	0.196	NR
Stomach	NC	0.140	0.0886	0.118	NC	0.102	NR

NC = Not Calculable: all samples were BQL; NR = Not Reported: some constructs measured all samples as BLQ.

Individual Gross Pathological Findings Explanation Page

Abbreviation	Description	Abbreviation	Description
AB	Abdominal region	LJ	Lower jaw
AX	Axillary region	LN	Lymph node
BC	Body cavity	LT	Left
BI	Bilateral	LU	Lumbar region
CGEP	Complete gross examination performed	MF	Multifocal
CR	Cranium	MU	Muzzle
DC	Dorsal cervical region	NBF	Neutral buffered formalin
DT	Dorsal thoracic region	Ø	In diameter
F	Focal	PO	Periorbital region
FL	Forelimb	RT	Right
FP	Forepaw	SA	Sacral region
G	Gross Pathology	SC	Scapular region
GALT	Gut associated lymphoid tissue	SI	Small intestine
GL	Gland	SR	Scrotum
HL	Hindlimb	TGL	Trackable Gross Lesion
HP	Hindpaw	UG	Urogenital region
IG	Inguinal region	VC	Ventral cervical region
IS	Interscapular region	VT	Ventral thoracic region
LI	Large Intestine		_

Note: This is a comprehensive list of abbreviations. All of the abbreviations listed may not be applicable to this report.

Dosing Information

Dosing information is abbreviated on various data outputs; the following represents the dosing information for this study.

Group No.	Test Item	Dose Level (µg)	
1	mRNA-1647	100	

Individual Gross Pathological Findings

5002121

Animal: 1001 Group: 1 Sex: Male

Species: Rat Strain: Sprague-Dawley

Dose: 100 ug

Removal Reason: Terminal Euthanasia

Day (Week) of Death 1 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

No observations found

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings 5002121

Animal: 1002 Group: 1 Sex: Male

Species: Rat Strain: Sprague-Dawley

Dose: 100 ug

Removal Reason: Terminal Euthanasia

Day (Week) of Death 1 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

LYMPH NODE, MANDIBULAR: Focus; dark: >10, bilateral

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1003 Group: 1 Sex: Male
Species: Rat Strain: Sprague-Dawley
Dose: 100 ug
Removal Reason: Terminal Euthanasia
Day (Week) of Death 1 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

LYMPH NODE, MANDIBULAR: Focus; dark: >10, bilateral

THYMUS: Focus; dark: >10

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1004 Group: 1 Sex: Male
Species: Rat Strain: Sprague-Dawley
Dose: 100 ug
Removal Reason: Terminal Euthanasia
Day (Week) of Death 1 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

LYMPH NODE, MANDIBULAR : Focus; dark : >10, bilateral LYMPH NODE, MANDIBULAR : Enlargement : Left

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1005 Group: 1 Sex: Male
Species: Rat Strain: Sprague-Dawley
Dose: 100 ug

Removal Reason: Terminal Euthanasia

Day (Week) of Death 1 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

LYMPH NODE, MANDIBULAR: Focus; dark: >10, bilateral

THYMUS: Focus; dark: 7

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1006 Group: 1 Sex: Male
Species: Rat Strain: Sprague-Dawley
Dose: 100 ug
Removal Reason: Terminal Euthanasia
Day (Week) of Death 1 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

No observations found

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1007 Sex: Male Group: 1 Species: Rat Strain: Sprague-Dawley 100 ug Dose: Removal Reason: Terminal Euthanasia Day (Week) of Death 1 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

LYMPH NODE, AXILLARY: Focus; dark: 3, right. LYMPH NODE, INGUINAL : Enlargement : right. LYMPH NODE, POPLITEAL: Enlargement: right.

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1008 Group: 1 Sex: Male
Species: Rat Strain: Sprague-Dawley
Dose: 100 ug
Removal Reason: Terminal Euthanasia
Day (Week) of Death 1 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

LYMPH NODE, AXILLARY: Focus; dark: >10, bilateral.

THYMUS: Focus; dark: >10.

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings 5002121

Animal: 1009 Sex: Male Group: 1

Sprague-Dawley Species: Rat Strain:

100 ug Dose:

Removal Reason: Terminal Euthanasia

Day (Week) of Death 1 (1)

Gross Pathology Animal Details:

Complete gross examination was performed. Animal

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

No observations found

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1010 Group: 1 Sex: Male
Species: Rat Strain: Sprague-Dawley
Dose: 100 ug
Removal Reason: Terminal Euthanasia
Day (Week) of Death 1 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

KIDNEY: Adhesion: right to capsule.

LYMPH NODE, AXILLARY: Focus; dark: >10, left.

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings 5002121

000212

Animal: 1011 Group: 1 Sex: Male

Species: Rat Strain: Sprague-Dawley

Dose: 100 ug

Removal Reason: Terminal Euthanasia

Day (Week) of Death 1 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

THYMUS: Focus; dark: >10

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings 5002121

Group: 1

Animal: 1012 Sex: Male

Species: Rat Strain: Sprague-Dawley

100 ug Dose:

Removal Reason: Terminal Euthanasia

Day (Week) of Death 1 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

LYMPH NODE, AXILLARY: Focus; dark: >10, left

SITE, INJECTION: Swelling: right

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1013 Group: 1 Sex: Male

Species: Rat Strain: Sprague-Dawley

Dose: 100 ug

Removal Reason: Terminal Euthanasia

Day (Week) of Death 1 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

SITE, INJECTION : Swelling : right THYMUS : Focus; dark : >10

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1014 Group: 1 Sex: Male

Species: Rat Strain: Sprague-Dawley

Dose: 100 ug

Removal Reason: Terminal Euthanasia

Day (Week) of Death 1 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

LYMPH NODE, MANDIBULAR: Focus; dark: >10, bilateral

SITE, INJECTION : Swelling : right THYMUS : Focus; dark : >10

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1015 Group: 1 Sex: Male
Species: Rat Strain: Sprague-Dawley
Dose: 100 ug
Removal Reason: Terminal Euthanasia

Day (Week) of Death 1 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

SITE, INJECTION : Swelling : right THYMUS : Focus; dark : >10

Gross Pathology - The following Tissues were Not Examined:

Sex: Male

Appendix 9

Animal:

Species:

Individual Gross Pathological Findings 5002121

Group: 1 Strain: Sprague-Dawley

Dose: 100 ug

Removal Reason: Terminal Euthanasia

Day (Week) of Death 2 (1)

Gross Pathology Animal Details:

1016

Rat

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

LYMPH NODE, POPLITEAL : Enlargement : Right

SITE, INJECTION: Swelling: right

SITE, INJECTION: Abnormal consistency; firm: right

THYMUS: Focus; dark: >10

Gross Pathology - The following Tissues were Not Examined:

Sex: Male

Appendix 9

Species: Rat

Animal:

Individual Gross Pathological Findings 5002121

Group: 1

Strain: Sprague-Dawley

Dose: 100 ug

Removal Reason: Terminal Euthanasia

Day (Week) of Death 2 (1)

Gross Pathology Animal Details:

1017

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

LYMPH NODE, POPLITEAL : Enlargement : Right

SITE, INJECTION : Swelling : right, extending into subcutis SITE, INJECTION : Abnormal consistency; firm : right

THYMUS: Focus; dark: >10

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1018 Group: 1 Sex: Male
Species: Rat Strain: Sprague-Dawley
Dose: 100 ug
Removal Reason: Terminal Euthanasia

Day (Week) of Death 2 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

LYMPH NODE, AXILLARY: Focus; dark: 1 to >10, bilateral

SITE, INJECTION: Swelling: Right

SITE, INJECTION: Abnormal consistency; firm: Right

THYMUS: Focus; dark: >10

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1019 Group: 1 Sex: Male
Species: Rat Strain: Sprague-Dawley
Dose: 100 ug

Removal Reason: Terminal Euthanasia

Day (Week) of Death 2 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

SITE, INJECTION: Swelling: right

SITE, INJECTION : Abnormal consistency; firm : right STOMACH : Focus; dark : 2, mucosa, glandular

THYMUS: Focus; dark: >10

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1020 Group: 1 Sex: Male Species: Rat Strain: Sprague-Dawley

Strain: Sprague-Dawley
Dose: 100 ug

Removal Reason: Terminal Euthanasia

Day (Week) of Death 2 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

SITE, INJECTION: Swelling: right

SITE, INJECTION: Abnormal consistency; firm: right

THYMUS: Focus; dark: >10

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1021 Sex: Male Group: 1 Species: Rat Strain: Sprague-Dawley 100 ug Dose: Removal Reason: Terminal Euthanasia

Day (Week) of Death 3 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

SITE, INJECTION: Abnormal consistency; firm: right

SITE, INJECTION: Focus; dark: 1, right

STOMACH: Focus; dark: 1, mucosa, glandular

THYMUS: Focus; dark: >10

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings 5002121

Animal: 1022 Group: 1 Sex: Male
Species: Rat Strain: Sprague-Dawley
Dose: 100 ug
Removal Reason: Terminal Euthanasia
Day (Week) of Death 3 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

LYMPH NODE, AXILLARY : Focus; dark : 1, right LYMPH NODE, POPLITEAL : Enlargement : right

SITE, INJECTION: Swelling: right

SITE, INJECTION: Abnormal consistency; firm: right

THYMUS: Focus; dark: >10

Gross Pathology - The following Tissues were Not Examined:

Sex: Male

Appendix 9

Individual Gross Pathological Findings 5002121

Animal: 1023 Group: 1
Species: Rat Strain: Sprague-Dawley

Dose: 100 ug

Removal Reason: Terminal Euthanasia

Day (Week) of Death 3 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

LYMPH NODE, POPLITEAL: Focus; dark: >10, right SITE, INJECTION: Abnormal consistency; firm: right

SITE, INJECTION: Focus; dark: 2, right

SITE, INJECTION: Material accumulation; clot: right

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1024 Group: 1 Sex: Male
Species: Rat Strain: Sprague-Dawley
Dose: 100 ug
Removal Reason: Terminal Euthanasia
Day (Week) of Death 3 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

LYMPH NODE, POPLITEAL : Enlargement : right

SITE, INJECTION: Swelling: right

SITE, INJECTION: Abnormal consistency; firm: right

SITE, INJECTION: Focus; dark: >10, right

THYMUS: Focus; dark: >10

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1025 Group: 1 Sex: Male
Species: Rat Strain: Sprague-Dawley
Dose: 100 ug
Removal Reason: Terminal Euthanasia
Day (Week) of Death 3 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

SITE, INJECTION: Swelling: right

SITE, INJECTION: Abnormal consistency; firm: right

SITE, INJECTION: Focus; dark: >10, right

THYMUS: Focus; dark: >10

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings 5002121

Animal: 1026 Group: 1 Sex: Male

Species: Rat Strain: Sprague-Dawley

Dose: 100 ug

Removal Reason: Terminal Euthanasia

Day (Week) of Death 4 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

THYMUS: Focus; dark: >10

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1027 Group: 1 Sex: Male
Species: Rat Strain: Sprague-Dawley
Dose: 100 ug
Removal Reason: Terminal Euthanasia
Day (Week) of Death 4 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

No observations found

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1028 Group: 1 Sex: Male

Species: Rat Strain: Sprague-Dawley
Dose: 100 ug

Removal Reason: Terminal Euthanasia

Day (Week) of Death 4 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

No observations found

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings 5002121

Animal: 1029 Group: 1 Sex: Male

Species: Rat Strain: Sprague-Dawley

Dose: 100 ug

Removal Reason: Terminal Euthanasia

Day (Week) of Death 4 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

THYMUS: Focus; dark: >10

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1030 Group: 1 Sex: Male
Species: Rat Strain: Sprague-Dawley
Dose: 100 ug
Removal Reason: Terminal Euthanasia
Day (Week) of Death 4 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

SITE, INJECTION: Focus; dark: 1, right

THYMUS: Focus; dark: >10

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1031 Group: 1 Sex: Male

Species: Rat Strain: Sprague-Dawley

Dose: 100 ug

Removal Reason: Terminal Euthanasia

Day (Week) of Death 6 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

THYMUS: Focus; dark: >10

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1032 Group: 1 Sex: Male

Species: Rat Strain: Sprague-Dawley

Dose: 100 ug

Removal Reason: Terminal Euthanasia

Day (Week) of Death 6 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

THYMUS: Focus; dark: >10

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings 5002121

Animal: 1033 Group: 1 Sex: Male

Species: Rat Strain: Sprague-Dawley

Dose: 100 ug

Removal Reason: Terminal Euthanasia

Day (Week) of Death 6 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

No observations found

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings 5002121

000212

Animal: 1034 Group: 1 Sex: Male
Species: Rat Strain: Sprague-Dawley
Dose: 100 ug
Removal Reason: Terminal Euthanasia
Day (Week) of Death 6 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

LYMPH NODE, INGUINAL: Focus; dark: >10, right

THYMUS: Focus; dark: >10

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings

5002121

Animal: 1035 Group: 1 Sex: Male
Species: Rat Strain: Sprague-Dawley
Dose: 100 ug
Removal Reason: Terminal Euthanasia

Day (Week) of Death

6 (1)

Gross Pathology Animal Details:

Animal Complete gross examination was performed.

Animal Notes: EUTHANASIA VIA ANESTHESIA AND PERFUSION

Gross Pathology Observations:

LYMPH NODE, AXILLARY: Focus; dark: 8, left

THYMUS: Focus; dark: >10

Gross Pathology - The following Tissues were Not Examined:

Individual Gross Pathological Findings 5002121

Key Page

Codes

 $(TGL) = Trackable\ Gross\ Lesion,\ (MPF) = Major\ Pathological\ Finding,\ (?) = Questionable,\ (E) = Excluded,\ (C) = Clinical\ Observation,\ (M) = Mass,\ (G) = Gross\ Pathology,\ (H) = Histo\ Pathology$

Group Information

Short Name Long Name
1 1